![]() |
|
|
Дипломная работа: Разработка базы данных7.2 Производственная санитария Поскольку разработанное программное обеспечение будет эксплуатироваться пользователем с использованием необходимых аппаратных средств, которые в свою очередь могут являться источниками каких-либо вредных факторов, то произведем анализ возникновения вредных факторов для пользователя и окружающей среды, используя для этого перечень вредных и опасных производственных факторов приведенных в таблице 7.1. Поскольку научно – исследовательская работа относится к легким физическим работам, но характеризуется напряженным умственным трудом, то руководствуясь [16], выбирают оптимальные параметры микроклимата. По энергозатратам организма, проведение научно исследовательской работы относится к категории Ia (легкой), так как работа исследователя производится сидя, не требует систематического физического напряжения или поднятия и переноса тяжестей (расход энергии при выполнении работы до 139 Вт). К основным показателям, характеризующим метеорологические условия в закрытых производственных помещениях (микроклимат) относятся: температура воздуха, [0С]; относительную влажность воздуха, [%]; скорость движения воздуха, [м/с]. Допустимые и оптимальные значения параметров метеорологических условий в соответствии с категорией работ и в зависимости от периода года приведены в таблице 7.2. Таблица 7.2–Допустимые и оптимальные значения параметров микроклимата
Обеспечение условий, приведенных в таблице 7.2, в теплый период года должно выполняться при помощи кондиционера. В холодный период года обмен воздуха осуществляется с помощью кондиционера и централизованного водяного отопления согласно СНиП 2.04.05.-93 [24]. Рисунок 7.1 – Схема расположения кондиционера и направления холодного воздуха Поток холодного воздуха от кондиционера направлен непосредственно на аппаратуру, а не на оператора ЭВМ. Задачей вентиляции и проветривания помещения является обеспечение чистоты воздуха и заданных метеорологических условий в производственных помещениях. Состояние освещения производственных, служебных и вспомогательных помещений регламентируется СНиП ІІ–4–79 [17]. В светлое время используется боковое одностороннее естественное освещение, а в темное время суток – искусственное. Искусственное освещение по функциональному значению – рабочее, по способу расположения источников света – общее равномерное, так как светильники расположены в верхней зоне помещения равномерно. Для создания комфортных условий зрительной работы средней точности необходимы следующие данные по нормам освещения, приведеные в таблице 7.3 Таблица 7.3 Характеристики зрительных работ
Согласно СНиП II-4-79 [17] для выбранного объекта различения, фона и контраста объекта различения с фоном минимальное значение освещенности будет равно 300 Лк. Естественное освещение рабочих мест – боковое, значение
коэффициента естественной освещенности (КЕО): При пересчете КЕО для условий города Харькова (IV пояс светового климата) воспользуемся формулой: где m — коэффициент светового климата; c — коэффициент солнечного климата. Для IV
светового пояса выбираем m =
0.9. Исходя из ориентации окон по сторонам света c = 0.85 . Тогда В соответствие с ДНАОП [21] нормативный показатель КЕО должен быть не менее 1,5%. В качестве источников света используются люминесцентные лампы мощностью 40 Вт или энергоэкономные мощностью 36 Вт типа ЛБ, ЛХБ, ЛЕЦ как наиболее эффективные и приемлемые с точки зрения спектрального состава, цветовая температура излучения которых находится в диапазоне 3500-4200 К. Для освещения помещения применяются светильники серии ЛП013, ЛП031, ЛП033 исполнение 001 и 006, ЛС002, ЛС004, с металлической экранирующей решеткой и непрозрачными боковинами. Шум является одним из наиболее распространенных в производстве вредных факторов. При длительном воздействии шума человек быстро устает, раздражается, происходит перенапряжение слуховых анализаторов. В соответствии с ГОСТ 12.1.003-83* [18] и ДНАОП 0.03-3.14-85[25] в вычислительных центрах эквивалентные уровни звука не должны превышать 50 дБА. Согласно ГОСТ 12.1.012-90 [26] уровень вибрации для категории II, тип в, в условиях «комфорта» не должна превышать 75 дБ. Для уменьшения уровня звука и вибрации применяются демпфирующие материалы (отсек принтера с печатающей головкой закрывается крышкой, используется резиновая прокладка между принтером и столом). Нормируемые параметры шума выбираются согласно [26]: а) уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами; б) уровень звука равен 50 дБА. Основным источником электромагнитного излучения, в том числе рентгеновского, в помещении являются электронно-лучевые трубки (ЭЛТ) мониторов. Согласно ДНАОП 0.00-0.31-99 [21] мощность экспозиционной дозы рентгеновского излучения трубки в любой точке перед экраном на расстоянии 5 см от его поверхности не должна превышать 100 мкР/ч. Защита пользователей ЭВМ от ЭМИ и рентгеновского излучения обеспечивается с помощью экранов из специального затемненного стекла. Нормы ЭМИ для диапазона частот 15-25 кГц по электрической составляющей Е не должны превышать 50В/м, по магнитной составляющей Н – 5А/м [21]. Однако требования ТСО’95 более жесткие. Например, нормы Е и Н в том же диапазоне частот равны значениям 1 В/м и 20 мА/м. Допустимые уровни напряженности электростатического поля на рабочем месте оператора, согласно ГОСТ 12.1.045-84 [19], не должны превышать 20 кВ/м. В помещениях для предотвращения образования статического электричества и защиты от него должны иметься нейтрализаторы и увлажнители воздуха, пол должен иметь антистатическое покрытие, а также необходимо делать заземление экрана дисплея. Рентгеновское излучение и статическое электричество вызывает ионизацию воздуха с образованием положительных ионов, считающихся неблагоприятными для человека. Норма содержания легких аэроионов обоих знаков от 1500 до 5000 в 1 см3 воздуха [22]. Мероприятиями по снижению количества ионов в воздухе являются увлажнение воздуха и проветривание помещения. Для уменьшения воздействия рентгеновского излучения и ЭМИ экран снабжен специальным покрытием, снижающим уровень этого излучения. Также снижение интенсивности электромагнитного и рентгеновского излучений достигается сокращением времени облучения: общее время работы не должно превышать 4ч за смену, длительность перерыва для отдыха должна составлять от 5 до 15 минут. Общий перерыв через 4 часа. Дополнительный перерыв через 3 часа и за 2 часа до окончания работы. Эксплуатируемый персональный компьютер IBM PC не является источником механических и тепловых опасностей, но является потребителем электроэнергии. Поэтому, при рассмотрении вопросов техники безопасности ограничиваемся электробезопасностью. Согласно ДНАОП 0.00 – 1.31 –99 [21] при проектировании систем электроснабжения, при монтаже силового электрооборудования и электрического освещения и в зданиях и помещениях для ЭВМ необходимо придерживаться требований нормативно-технической документации. ПЭВМ является однофазным потребителем электроэнергии, питающейся переменным током напряжением 220В и частотой 50Гц, от сети с заземленной нейтралью. По способу защиты человека от поражения электрическим током ЭВМ должно соответствовать первому классу защиты согласно ГОСТ 12.2.007.0-75 [27]. Защиту от случайного прикосновения к токоведущим частям обеспечивают конструктивные, схемно-конструктивные и эксплуатационные меры защиты. Комплекс необходимых мер по электробезопасности определяется, исходя из видов электроустановки, ее номинального напряжения, условий среды, типа помещения и доступности электрооборудования. По степени опасности поражения электрическим током помещение относится к помещениям без повышенной опасности, в соответствии с ПУЭ-87[28]. В ПУЭ-87[28] предусмотрены следующие меры электробезопасности: 1.Конструктивные меры IBM PC относится к электроустановкам до 1000В закрытого исполнения, все токоведущие части находятся в кожухах. В соответствии с ГОСТ 14255-69 [19] и ПУЭ-87[18] выбираем степень защиты персонала от соприкосновения с токоведущими частями внутри защитного корпуса и от попадания воды внутрь корпуса – IP-44. 2.Схемно-конструктивные меры Схемно-конструктивные меры электробезопасности обеспечивают безопасность прикосновения человека к металлическим нетоковедущим частям электрических аппаратов при случайном пробое из изоляции и возникновения электрического потенциала на них. В качестве схемно-конструктивной меры безопасности предусматривается зануление [19].Кроме того, используется двойная изоляция монитора и малые напряжения (менее 42 В). Нулевой защитный проводник соединяет зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока или ее эквивалентом. Линия электросети для питания ЭВМ и периферийной техники выполняется как отдельная групповая трехпроводная сеть, путем прокладки фазового, нулевого рабочего, нулевого защитного проводников [19]. Нулевой защитный проводник прокладывается от группового распределительного щита к розеткам питания. Не допускается подключение на щите к одному контактному зажиму нулевого защитного проводников. Конструкция штепсельных соединений электророзеток должна обеспечить более раннее подсоединение нулевого защитного проводника по сравнению с фазовым нулевым рабочим. Площадь сечения нулевого рабочего, нулевого защитного проводников должна быть не меньше плошади сечения фазового проводника. Все проводники должны соответствовать номинальным параметрам сети и нагрузки, условиям окружающей среды, типам аппарата защиты и другим требованиям [18]. Подключение ЭВМ к обычной двухпроводной сети, в том числе с использованием переходных приспособлений недопустимо. При расположении в помещении до пяти ЭВМ по его периметру разрешается положить трехпроводниковый кабель в оболочке из несгораемого и трудносгораемого материала без металлических труб. Если имеется свыше 5 компьютеров то кабель прокладывают в металлических трубах и гибких металлических рукавах с отводами. Если ЭВМ размещены в центре помещения электросеть прокладывается в каналах или под съемным полом в металлических трубах и гибких металлических рукавах. Произведем расчет зануления в соответствии с требованиями [28]. Схема электроснабжения зануляемой электроустановки представлена на рисунке 7.2. Рисунок 7.2 – Схема электроснабжения зануляемой электроустановкигде ТрU1/U2 – трансформатор масляный понижающий , U2=0.4кВт; схема соединения обмоток – звезда-звезда; СШ – сборная шина; РЩ – распределительный щит; А.З. – аппарат защиты; L1 – длина участка сети от распределительного щита до электроустановки, не более 100 м; L2 – длина участка сети от понижающего трансформатора до распределительного щита, не более 500 м; R0 – сопротивление заземлителя нейтральной точки; Р1 – мощность потребителя (однофазной установки); Р2 – мощность потребителей без учета подключенной мощности Р1. Р3 – мощность всех потребителей, подключенных к однофазному проводу; Электросеть выполнена как трехпроводная сеть, состоящая из фазного провода, нулевого рабочего и нулевого защитного проводников. L1=90 м; L2=500 м; Р1=250 Вт; P2=4000 Вт, P3 = P1 + P2 = 4000 Вт + 250Вт = 4250 Вт. Материал жилы – медь, способ прокладывания: 1-й участок – в металлической трубе; 2-й участок – в земле. Произведем расчет автомата отключения для мощностей P2 и P3. Постановка задачи зануления электроустановки: определение такого сечения нулевого защитного проводника при котором ток короткого замыкания Iкз в заданное число раз К превысит номинальный ток срабатывания аппарата защиты Iном, что обеспечит отключение поврежденного потребителя. 1) Выбор типа автоматического выключателя. 1а) Определение тока, питающего электроустановки мощностью Р2 = 5000 Вт: I1=Р2/UФ=4000/220=18.1818 А. где Р2 – мощность потребителей без учета мощности Р1; Uф – фазное напряжение (220 В); 1б) Определение расчетной величины тока срабатывания защитного аппарата: Iрасч=(Кп/Кт)*I1=(3/2.5)*18.1818=21.816 А. где Кп=3 – коэффициент кратности пускового тока; Кт=2.5 – коэффициент тяжести пуска электроустановки (зависит от времени пуска: t = 5 с, пуск легкий). 1в) Выбор типа автоматического выключателя и определение величины тока срабатывания аппарата защиты: Iном=40 А; тип автоматического выключателя А3713Б. 2) Определение тока короткого замыкания фазы на корпус электроустановки: Iкз=Uф/((Zтр/3)+Zпфн). Zтр – сопротивление обмотки трансформатора; Zпфн – сопротивление петли фаза-ноль. 2а) Определение полного сопротивления трансформатора. Выбираем мощность силового трансформатора Nтр. Для масляного трансформатора при схеме соединения обмоток звезда-звезда и напряжении на первичной обмотке до U = 6-10 кВ: Nтр = f(Р3) = 4*Р3. Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |