рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Курсовая работа: Неразрушающий контроль. Акустическая дефектоскопия

Курсовая работа: Неразрушающий контроль. Акустическая дефектоскопия

«Неразрушающий контроль. Акустическая дефектоскопия»

Санкт-Петербург 2011 г


Содержание

Введение

Глава 1. Явление ультразвука

1.1 Физические свойства и особенности распространения ультразвука

1.2 Генерация ультразвука

1.3 Прием и обнаружение ультразвука

1.4 Применение ультразвука

Глава 2. Аппаратура для контроля

2.1 Состав аппаратуры

2.2 Ультразвуковые дефектоскопы

2.3 Импульсные ультразвуковые дефектоскопы

2.4 УЗД с непрерывным излучением

Глава 3. Методы акустического контроля

3.1 Активные методы

3.2 Пассивные методы

3.3 Области применения методов

Литература


Введение

При проведении мониторинга технического состояния сложных систем и агрегатов одной из наиболее актуальных является задача объективного своевременного обнаружения дефектов различной природы и организация контроля за развитием дефектов из-за старения элементов при эксплуатации. Одним из путей предотвращения нежелательных последствий от эксплуатации изделий с дефектами является систематичное использование методов неразрушающего контроля. Применение каждого из методов в каждом конкретном случае характеризуется вероятностью выявления дефектов. На вероятность выявления дефектов влияют чувствительность метода, а также условия проведения процедуры контроля. Определение вероятности выявления дефектов является достаточно сложной задачей, которая еще более усложняется, если для повышения достоверности определения дефектов приходится комбинировать методы контроля. Комбинирование методов подразумевает не только использование нескольких методов, но и чередование их в определенной последовательности (технологии). Вместе с тем, стоимость применения метода контроля или их совокупности должна быть по возможности ниже. Таким образом, выбор стратегии применения методов контроля основывается на стремлении, с одной стороны, повысить вероятность выявления дефектов и, с другой стороны, снизить различные технико-экономические затраты на проведение контроля.

Дефектоскопия — обобщающее название неразрушающих методов контроля материалов (изделий); используется для обнаружения нарушений сплошности или однородности макроструктуры, отклонений химического состава и других целей. Наиболее распространены ультразвуковая, рентгено- и гамма-дефектоскопия, ИК, люминесцентная, капиллярная, магнитная, термо- и трибоэлектрическая дефектоскопия.

Основными областями применения ультразвука в приборостроении являются ультразвуковая обработка, ультразвуковая дефектоскопия и оптико-акустическая информатика. Ультразвуковая обработка представляет собой совокупность способов обработки изделий из металлов, полупроводников, керамики и других материалов с использованием энергии ультразвуковых колебаний (УЗК). В производстве изделий электронной техники ультразвуковая обработка часто применяется в сочетании другими методами обработки для интенсификации реализуемых процессов: очистки, сварки, пайки, лужения деталей, химического и электрохимического травления и осаждения металлов, сушки, пропитки пористо-капиллярных материалов (например, секций электролитических конденсаторов).

Ультразвуковая дефектоскопия, группа методов дефектоскопии, в которых используют проникающую способность упругих волн ультразвукового диапазона частот (иногда звукового). Ультразвуковая дефектоскопия один из наиболее универсальных способов неразрушающего контроля, методы которого позволяют обнаруживать поверхностные и глубинные дефекты трещины, раковины, расслоения в металлических и неметаллических материалах (в том числе сварных и паяных швах, клеёных многослойных конструкциях), определять зоны коррозии металлов, измерять толщину (резонансный метод).

Ультразвуковая дефектоскопия – это комплекс методов неразрушающего контроля, основанных на применении упругих волн ультразвукового диапазона.


Глава 1. Явление ультразвука

Ультразвук — упругие колебания и волны с частотами приблизительно от 1,5— 2×104 Гц (15—20 кГц) и до 109 Гц (1 ГГц), область частот ультразвука от 109 до 1012-13Гц принято называть гиперзвуком. Область частот ультразвука можно подразделить на три подобласти: ультразвук низких частот (1,5×104—105 Гц) — УНЧ, ультразвук средних частот (105—107 Гц) — УСЧ и область высоких частот ультразвука (107—109 Гц) — УЗВЧ. Каждая из этих подобластей характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.

1.1 Физические свойства и особенности распространения ультразвука

По своей физической природе ультразвук представляет собой упругие волны и в этом он не отличается от звука. Частотная граница между звуковыми и ультразвуковыми волнами поэтому условна; она определяется субъективными свойствами человеческого слуха и соответствует усреднённой верхней границе слышимого звука. Однако благодаря более высоким частотам и, следовательно, малым длинам волн имеет место ряд особенностей распространения ультразвука. Так, для УЗВЧ длины волн в воздухе составляют 3,4×10-3—3,4×10-5 см, в воде 1,5×10-2—1,5×10-4 см и в стали 5×10-2— 5×10-4 см, ультразвук в газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники ультразвука, затухание в которых значительно меньше. Так, например, в воде затухание ультразвука при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования УСЧ и УЗВЧ относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только УНЧ. Ввиду малой длины волны ультразвука на характере его распространения сказывается молекулярная структура среды, поэтому, измеряя скорость ультразвука с и коэффициент поглощения a, можно судить о молекулярных свойствах вещества. Этими вопросами занимается молекулярная акустика. Характерная особенность распространения ультразвука в газах и жидкостях — существование отчётливо выраженных областей дисперсии, сопровождающейся резким возрастанием его поглощения. Коэффициент поглощения ультразвука в ряде жидкостей существенно превосходит рассчитанный по классической теории и не обнаруживает предсказанного этой теорией увеличения, пропорционального квадрату частоты. Все эти эффекты находят объяснение в релаксационной теории, которая описывает распространение ультразвука в любых средах и является теоретической базой современной молекулярной акустики, а основной экспериментальный метод — измерение зависимости с и особенно, а от частоты и от внешних условий (температуры, давления и др.).

Совокупность уплотнений и разряжений, сопровождающая распространение ультразвуковой волны, представляет собой своеобразную решётку, дифракцию световых волн на которой можно наблюдать в оптически прозрачных телах. Малая длина ультразвуковых волн является основой для того, чтобы рассматривать их распространение в ряде случаев методами геометрической акустики. Физически это приводит к лучевой картине распространения. Отсюда вытекают такие свойства ультразвука, как возможность геометрического отражения и преломления, а также фокусировки звука.

Следующая важная особенность ультразвука, — возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, так как при данной амплитуде плотность потока энергии пропорциональна квадрату частоты. Ультразвуковые волны большой интенсивности сопровождаются рядом эффектов, которые могут быть описаны лишь законами нелинейной акустики. Так, распространению ультразвуковых волн в газах и в жидкостях сопутствует движение среды, которое называют акустическим течением. Скорость акустического течения зависит от вязкости среды, интенсивности ультразвука и его частоты; вообще говоря, она мала и составляет доли % от скорости ультразвука.

1.2 Генерация ультразвука

Для генерирования ультразвуковых колебаний применяют разнообразные устройства, которые могут быть разбиты на две основные группы — механические, в которых источником ультразвука является механическая энергия потока газа или жидкости, и электромеханические, в которых ультразвуковая энергия получается преобразованием электрической. Механические излучатели ультразвука — воздушные и жидкостные свистки и сирены — отличаются сравнительной простотой устройства и эксплуатации, не требуют дорогостоящей электрической энергии высокой частоты, КПД их составляет 10—20%. Основной недостаток всех механических ультразвуковых излучателей — сравнительно широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет их использовать для контрольно-измерительных целей; они применяются главным образом в промышленной ультразвуковой технологии и частично — как средства сигнализации.

Основной метод излучения ультразвука — преобразование тем или иным способом электрических колебаний в колебания механические. В диапазоне УНЧ возможно применение электродинамических и электростатических излучателей. Широкое применение в этом диапазоне частот нашли излучатели ультразвука, использующие магнитострикционный эффект в никеле и в ряде специальных сплавов, также в ферритах. Для излучения УСЧ и УЗВЧ используется главным образом явление пьезоэлектричества. Основными пьезоэлектрическими сигналами для излучателей ультразвука служат пьезокварц, ниобат лития, дигидрофосфат калия, а в диапазоне УНЧ и УСЧ — главным образом различные пьезокерамические материалы. Магнитострикционные излучатели представляют собой сердечник стержневой или кольцевой формы с обмоткой, по которой протекает переменный ток, а пьезоэлектрические — пластинку или стержень из пьезоэлектрического материала с металлическими электродами, к которым прикладывается переменное электрическое напряжение. В диапазоне УНЧ широкое распространение получили составные пьезоизлучатели, в которых пьезокерамическая пластинка зажимается между металлическими блоками. Как правило, для увеличения амплитуды колебаний и излучаемой в среду мощности применяются колебания магнитострикционных и пьезоэлектрических элементов на их собственной резонансной частоте.

1.3 Приём и обнаружение ультразвука

Вследствие обратимости пьезоэффекта он широко применяется и для приёма ультразвука. Изучение ультразвукового поля может производиться и оптическими методами: ультразвук, распространяясь в какой-либо среде, вызывает изменение её оптического показателя преломления, благодаря чему его можно визуализировать, если среда прозрачна для света. Смежная область акустики и оптики (акустооптика) получила большое развитие, в особенности после появления газовых лазеров непрерывного действия; развились исследования по дифракции света на ультразвук и её различным применениям.

1.4 Применение ультразвука

Применения ультразвука чрезвычайно разнообразны. Ультразвук служит мощным методом исследования различных явлений во многих областях физики. Так, например, ультразвуковые методы применяются в физике твёрдого тела и физике полупроводников; возникла целая новая область физики — акусто-электроника, на основе достижений которой разрабатываются различные приборы для обработки сигнальной информации в микроэлектронике. Ультразвук играет большую роль в изучении вещества. Наряду с методами молекулярной акустики для жидкостей и газов, в области изучения твёрдых тел измерение скорости с и коэффициента поглощения a используются для определения модулей упругости и диссипативных характеристик вещества. Получила развитие квантовая акустика, изучающая взаимодействие квантов упругих возмущений: фанонов с электронами, магнонами и другими квазичастицами и элементарными возбуждениями в твёрдых телах. У. широко применяется в технике, а также ультразвуковые методы всё больше проникают в биологию и медицину.

Применение ультразвука в технике. По данным измерений с и a, во многих технических задачах осуществляется контроль за протеканием того или иного процесса (контроль концентрации смеси газов, состава различных жидкостей и т.д.). Используя явление отражения ультразвука на границе различных сред, конструируют ультразвуковые приборы для измерения размеров изделий (например, ультразвуковые толщиномеры), для определения уровня жидкости в больших, недоступных для прямого измерения ёмкостях. Ультразвук сравнительно малой интенсивности (до ~0,1 вт/см2) широко используется для целей неразрушающего контроля изделий из твёрдых материалов (рельсов, крупных отливок, качественного проката и т. д.). Быстро развивается направление дефектоскопии, получившее название акустической эмиссии, которая состоит в том, что при приложении механического напряжения к образцу (конструкции) твёрдого тела он «потрескивает» (подобно тому, как при изгибе «потрескивает» оловянный стержень). Это объясняется тем, что в образце возникает движение дислокаций, которые при определённых условиях (до конца ещё пока не выясненных) становятся источниками (так же, как и совокупность дислокаций и субмикроскопических трещин) акустических импульсов со спектром, содержащим частоты ульразвука. При помощи акустической эмиссии удаётся обнаружить образование и развитие трещины, а также определить её местонахождение в ответственных деталях различных конструкций. При помощи ультразвука осуществляется звуковидение: преобразуя ультразвуковые колебания в электрические, а последние — в световые, оказывается возможным при помощи ультразвука видеть те или иные предметы в непрозрачной для света среде. На частотах УЗВЧ диапазона создан ультразвуковой микроскоп — прибор, аналогичный обычному микроскопу, преимущество которого перед оптическим состоит и том, что при биологических исследованиях не требуется предварительного окрашивания предмета. Развитие голографии привело к определённым успехам в области ультразвуковой голографии.


Глава 2. Аппаратура для контроля

2.1 Состав аппаратуры

В состав аппаратуры для акустического неразрушающего контроля входят: акустический дефектоскоп с преобразователями; стандартные образцы; вспомогательные приспособления и устройства для соблюдения параметров сканирования и измерения акустических характеристик выявленных дефектов.

При методе отражений используют акустические дефектоскопы, работающие в диапазоне частот 0,2...30 МГц, т. е. ультразвуковые дефектоскопы.

2.2 Ультразвуковые дефектоскопы

Ультразвуковые дефектоскопы обычно работают в импульсном режиме, значительно реже — в непрерывном режиме излучения упругих колебаний. Четкая классификация импульсных ультразвуковых дефектоскопов определена ГОСТ 23049—84. В зависимости от области применения ультразвуковые дефектоскопы (УД) подразделяют на две группы: общего назначения — УД и специализированные — УДС, а в зависимости от функционального назначения на четыре группы (табл. 1). Условное обозначение дефектоскопа состоит из букв УД (или УДС), номера группы и порядкового номера модели, а также буквы М с номером модернизации и номера исполнения по устойчивости к воздействию внешней среды.

Таблица 1. Классификация ультразвуковых дефектоскопов

Группа УЗД Функциональное назначение УЗД Примеры обозначения
1 Обнаружение дефектов (пороговые УЗД)

УД1-...

УДС1-...

2 Обнаружение дефектов измерение глубины (координат) их залегания и отношения амплитуд сигналов от дефектов

УД2-...

УДС2-...

3 Обнаружение дефектов, измерение глубины (координат) их залегания и эквивалентной площади дефектов или условных размеров дефектов

УД3-...

УДС3-...

Группа УЗД Функциональное назначение УЗД Примеры обозначения
4 Обнаружение дефектов, распознавание их форм или ориентации, измерение глубины (координат) их залегания и размеров дефектов или условных размеров дефектов

УД4-...

УДС4-...

Дефектоскопы разрабатывают из расчета на перемещение преобразователя вручную (далее ручной контроль, ручные дефектоскопы), на механизированное сканирование (механизированные дефектоскопы) или на механизированное сканирование и автоматическую обработку и регистрацию информации (автоматизированные дефектоскопы).

В практике неразрушающего контроля наиболее широко используют ручные импульсные ультразвуковые дефектоскопы 2-й и 3-й групп общего или специального назначения. Общим для этих дефектоскопов является наличие электронно-лучевого и звукового индикаторов, электронного глубиномера для определения координат залегания отражающей поверхности, аттенюатора для измерения отношения амплитуд сигналов в децибелах.

Обобщенные структурные схемы ультразвуковых дефектоскопов с импульсным и непрерывным излучением существенно различаются.

2.3 Импульсные ультразвуковые дефектоскопы

Основными параметрами сигнала в методе отражений, подлежащими измерению, являются амплитуда U (дБ) и временной сдвиг Т (мкс) принятого сигнала (импульса) относительно излученного, называемого зондирующим сигналом (импульсом).

Для возбуждения импульсов упругих колебаний с частотой f и приема их отражений в дефектоскопах используют в основном пьезоэлектрические преобразователи, реже — электромагнитно-акустические.

Обобщенная структурная схема импульсного УЗД 2-й и 3-й групп приведена на рис. 1 (ГОСТ 23049—84).

Рисунок 1. Обобщенная структурная схема импульсного УЗД

Генератор синхронизирующих импульсов обеспечивает синхронизацию работы узлов дефектоскопа, реализуя импульсный режим излучения — приема УЗ-колебаний. При ручном контроле этот генератор работает в режиме самовозбуждения; при использовании дефектоскопа в многоканальной аппаратуре механизированного и автоматизированного контроля его переключают в режим внешнего запуска. Независимо от режима генератор вырабатывает импульсы, используемые для пуска генератора радиоимпульсов, генератора напряжения развертки, блока цифровой обработки, схемы временной селекции автоматического сигнализатора дефектов.

Генератор радиоимпульсов предназначен для формирования высокочастотных электрических импульсов, используемых для возбуждения УЗ-колебаний в преобразователе. До последнего времени наиболее часто применяли схемы генераторов радиоимпульсов с контуром ударного возбуждения. В дефектоскопах, созданных недавно, чаще используют схемы, позволяющие получать радиоимпульсы с колоколообразной огибающей, характеризующиеся большим КПД и наиболее узким спектром при заданной длительности.

Высокочастотные электрические колебания пьезопластиной преобразователя трансформируются в механические, которые при наличии акустического контакта вводятся в контролируемый объект. Дойдя до границы с какой-либо инородной средой (дефектом), эти колебания частично отражаются, регистрируются и преобразуются в приемном преобразователе в электрические импульсы, поступающие на вход приемно-усилительного тракта дефектоскопа.

Приемно-усилительный тракт дефектоскопа предназначен для усиления и детектирования сигналов, регистрируемых приемным преобразователем. Тракт содержит, как правило, следующие элементы: двусторонний диодный ограничитель, ограничивающий амплитуду зондирующего импульса на входе усилителя; калиброванный делитель напряжения — измерительный аттенюатор; усилитель высокой частоты; детектор; видеоусилитель; формирователь управляющего напряжения временной регулировки чувствительности. Измерительный аттенюатор позволяет оператору сравнивать уровни эхо-сигналов от различных отражателей.

В УЗ-дефектоскопах измерительные аттенюаторы выполняют, как правило, путем цепочечного соединения звеньев на резисторах с изменением вносимого затухания путем переключения звеньев. Общее затухание, установленное на аттенюаторе, равно сумме затуханий, определяемых положением ручек аттенюатора. Точность аттенюатора характеризуют пределом допускаемой абсолютной погрешности измерения отношения амплитуд сигналов на входе приемника, которая в современных дефектоскопах не превышает 1 ... 2 дБ.

Видеоусилители современных дефектоскопов включают в себя схему регулируемой отсечки, обеспечивающую передачу сигналов, превышающих заданный уровень, называемый уровнем подавления, без искажений.

Формирователь управляющего напряжения автоматической временной регулировки чувствительности (ВРЧ) предназначен для выработки напряжения, управляющего во времени коэффициентом усиления приемного тракта дефектоскопа. Применение системы ВРЧ позволяет уменьшить время восстановления усилителя после перегрузки его зондирующим импульсом. Кроме того, система ВРЧ позволяет компенсировать ослабление УЗ-колебаний в контролируемом изделии, обусловленное дифракционным расхождением и затуханием ультразвука. В некоторых дефектоскопах форму управляющего напряжения ВРЧ можно наблюдать на экране электронно-лучевой трубки.

В большинстве эхо-импульсных дефектоскопов в качестве индикаторов используют электронно-лучевые трубки электростатическим отклонением луча в виде индикаторов типа А. На экране такого индикатора воспроизводится в масштабе процесс распространения УЗ-колебаний в контролируемом объекте. Длительность развертки регулируется в зависимости от скорости распространения УЗ-колебаний в материале объекта и толщины контролируемого слоя. Для формирования изображения на горизонтально отклоняющие пластины подается пилообразное напряжение, вырабатываемое генератором напряжения развертки.

Страницы: 1, 2


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.