рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Курсовая работа: Метод кусочного размножения оценок при обработке реализаций сигналов ограниченного объема

Курсовая работа: Метод кусочного размножения оценок при обработке реализаций сигналов ограниченного объема

Содержание

1. Обработка реализаций сигналов ограниченного объема

2. структурная схема устройства, реализующая метод кусочного размножения оценок

3. временные и частотные характеристики устройства, реализующего метод кусочного размножения оценок

выводы

Библиографический список


1. Обработка реализаций сигналов ограниченного объема

Существующие методы обработки широко применяются при решении прикладных задач в системах телекоммуникаций, метрологии, статистической обработки. Как правило, их использование определяется начальными условиями: модель взаимодействия полезной и шумовой составляющей; ограничения, накладываемые на компоненты модели обрабатываемого сигнала. Разнообразие методов обработки составляет разнообразие начальных условий, на которых они определены. Начальные условия большинства методов обработки пересекаются и, при решении конкретной задачи, существует возможность использования нескольких различных подходов к получению оценок полезного сигнала. Во многом это связано с тем, что при определении ряда начальных условий накладываются не жесткие ограничения, что образует ряд альтернативных подходов к обработке. В данных ситуациях необходимо решать задачу не только обработки сигнала, но и выбора наиболее приемлемого метода оценивания, что является более сложной задачей. К методу обработки предъявляются требования, которые во многих случаях трудно достичь при использовании только одного алгоритма. В общем случае такими требованиями являются: обработка сигналов, описываемых широким классом функций; эффективное подавление шума, который описывается широким классом случайных функций; простота реализации; возможность эффективно обрабатывать реализации различных объемов в условиях априорной неопределенности о составляющих анализируемого процесса.

Несмотря на противоречивость выдвигаемых требований, в ряде последних работ В.И. Марчука, В.Я. Катковника, К.О. Егиазаряна, Я. Астола предложены новые подходы и методы ослабления шумовой составляющей, позволяющие существенно расширить начальные условия обработки и сделать более мягкими ограничения на свойства составляющих математической модели, описывающей исходную реализацию.

В качестве модели обрабатываемого сигнала наиболее часто используется на практике аддитивная модель, которая определяется выражением:

, (1)

где  – неслучайный полезный сигнал,  – случайные составляющие, действующие на фоне полезного сигнала. Закон распределения каждой составляющей  различен.

Математическая модель полезной составляющей  в большинстве случаев является многокомпонентной, что осложняет ее анализ и обработку. В общем случае модель полезного сигнала  можно представить элементом множества гладких функций , которое определяется следующим образом [4]:

,

где  – максимальный порядок производной функции множества .

Во множестве функций  можно выделить подмножество гармонических функций [4]:

,

а также часть пространства  составляет подпространство полиномиальных функций:


.                 (2)

Как правило, на практике рассматривают подмножество , ограниченное условием . Принятое ограничение связано с условием гладкости, заключающееся в том, что любую модель из пространства  можно приблизить полиномами невысокой степени на интервале  [1].

При построении математической модели случайной (шумовой) составляющей (1) выдвигается предположение о том, что составляющие  имеют гауссовский закон распределения с нулевым математическим ожиданием [3]. Как и в случае полезного сигнала, шумовую составляющую в общем случае можно представить элементом множества случайных процессов  [2]:

.

В случае представления реализации результатов измерения в виде дискретного ряда выражение (1) запишется в виде [8]:

, .             (3)

Таким образом, исходная реализация результатов измерений представляет собой ряд , в котором значения получены в равноотстоящие моменты времени, то есть . Для упрощения дальнейшего анализа полученных результатов измерений произведем нормировку значений  относительно времени дискретизации . В результате , а выражение (3) представляется в виде суммы отсчетов дискретных рядов – полезного сигнала и шумовой составляющей:


, . (4)

Отсчеты полезного сигнала  принадлежат к пространству . Отсчеты аддитивной шумовой составляющей принадлежат случайному процессу пространства .

Исходная последовательность представляет собой реализацию нестационарного случайного сигнала, математическое ожидание которого является функционально зависимым. Сложность обработки таких реализаций заключается в отсутствии априорных данных о функциональной зависимости математического ожидания [5]. Априорно неизвестна функциональная зависимость полезного сигнала , но предполагается, что она относится к пространству функций  (2), шумовая составляющая принадлежит к пространству , а плотность ее распределения симметрична относительно математического ожидания. Наряду с априорной информацией о составляющих обрабатываемого сигнала, немаловажным является объем его реализации. В условиях проведения уникальных экспериментов и невозможности получить достаточных объемов реализаций ограничения на объем выборки являются самыми существенными. В условиях ограниченности объема реализации предполагается, что выборка составляет от 30 до 150 значений [2]. Для получения оценки полезной составляющей сигнала  необходимо уменьшить дисперсию шумовой составляющей  путем осуществления сглаживания.

Таким образом, при таком определении начальных условий использование большинства существующих методов обработки ограниченно. В первую очередь это связано с зависимостью оптимальных значений их параметров обработки от формы полезной составляющей и закона распределения шума [2]. В большинстве случаев при такой постановке задачи производится сглаживание реализации простыми методами: простое скользящее среднее, взвешенное скользящее среднее, медианное сглаживание, экспоненциальное сглаживание и т.д. [1]. Следует отметить, что их использование на выборках ограниченного объема обладает существенными недостатками [3]. Решение задачи выделения полезной составляющей осуществляется методом наименьших квадратов с использованием наиболее подходящей аппроксимирующей функции в смысле определенного критерия. При этом оптимальный выбор аппроксимирующей функции крайне затруднителен в условиях априорной неопределенности. В работах Дж. Бендата и А. Пирсона, С.М. Переверткина и ряда других указывается на то, что наилучшее оценивание полезного сигнала достигается, когда исходный сигнал представлен ансамблем реализаций, а оценка полезного сигнала осуществляется путем их усреднения по сечениям. В связи с этим предлагается использовать метод выделения полезного сигнала (патент № 2257610), основанный на разбиении исходной реализации на перекрывающиеся интервалы одинаковой длины, с последующей оценкой на каждом из них полезного сигнала методом наименьших квадратов с полиномиальной аппроксимирующей функцией. Такой подход позволяет получить множество оценок полезного сигнала в каждом сечении процесса  с последующим их усреднением [1].

Согласно выражению (4) исходная выборка представляет собой последовательность отсчетов . Для получения оценки полезной составляющей разбиваем исходную реализацию  на  перекрывающихся интервалов, как показано на рис. 1. Длина каждого интервала фиксирована и равна априорно заданной величине . Разбиение формируется таким образом, что  отсчетов предыдущего интервала содержится в последующем интервале. Данный способ разбиения позволяет сохранить корреляционные связи между отсчетами при последующем получении оценок полезного сигнала. Исходная последовательность  с учетом предлагаемого разбиения перепишется в следующем виде , где  [9].

Исходный ряд ,  можно представить в виде матрицы размера :

. (5)

На каждом скользящем интервале производится оценка полезной составляющей (рис. 1). Как показано на рис. 1, полученные оценки группируются (группы оценок обведены овалами). Результирующая оценка получается путем усреднения множества оценок полезного сигнала, полученных в результате аппроксимации. На основе анализа предлагаемого разбиения исходной реализации выделим три участка:

,,.


Рис. 1. Пример разбиения исходной реализации сигнала на перекрывающиеся интервалы постоянной длины

Выделение трех участков связано с тем, что в начале и конце реализации оценивание происходит по группам оценок различного объема. На первом интервале исходной выборки , количество оценок полезной составляющей в каждый момент времени пропорционально номеру отсчета , на втором интервале – количество оценок равно ширине скользящего интервала и составляет  значение, а на последнем интервале оценивания , с ростом номера отсчета  количество оценок в каждом сечении уменьшается от  до 1 (рис. 1).

Оценка исходного ряда (5) представляет собой также матрицу такого же размера :


. (6)

Матрица (6) получается в результате оценивания полезной составляющей по значениям , ,  каждой строчки матрицы (5). Для перехода от матричного представления оценки обратно к одномерной реализации необходимо усреднить ее значения по столбцам. Результирующая оценка полезной составляющей запишется в следующем виде:

                    (7)

Значения оценок, составляющие матрицу (6), получены путем аппроксимации исходной реализации , для каждого  методом наименьших квадратов. Таким образом,  соответствует номеру строки матрицы оценок  (6). В работе [9] приведены результаты исследования для случая, когда на каждом интервале  производится аппроксимация функциями пространства (2), при этом оно ограничено условием . Полученные результаты являются частными и не позволяют исследовать зависимость погрешности оценивания от параметров метода обработки. Для проведения таких исследований необходимо получить общее решение задачи аппроксимации на каждом скользящем участке для аппроксимирующего полинома произвольной степени . Использование ранее предложенного подхода имеет следующие недостатки [5]:

-  минимизация целевой функции метода наименьших квадратов при произвольной степени  аппроксимирующего полинома сводится к решению системы  уравнения, что приводит к значительным вычислительным затратам при больших ;

-  в случае, если необходимо увеличить или уменьшить степень аппроксимирующего полинома, производится полный пересчет всех ранее полученных коэффициентов и оценок.

Использование системы ортогональных многочленов позволяет устранить эти недостатки.

Исходная дискретная последовательность  определена в  узле. Введем систему ортогональных многочленов  Лежандра, где  последовательно возрастающих степеней, обладающие свойством [5]:

,

где  – некоторая весовая функция. Будем рассматривать случай, когда .

Таким образом, имея систему ортогональных многочленов, можно построить многочлен наилучшего приближения в смысле минимума квадратичной целевой функции. В общем случае аппроксимирующую полиномиальную функцию можно представить в виде [5]:

. (8)


Отметим, что полином (8) также принадлежит к пространству (2).

В соответствии с общей теорией ортогональных многочленов коэффициенты  определяются выражением [5]:

, (9)

где  – норма ортогональных многочленов.

В соответствии с предлагаемым методом разбиения оценки коэффициентов  полинома (8) на каждом скользящем интервале  различны, тогда выражение (9) перепишется в следующем виде:

,

где ,  – длина интервала разбиения.

Анализ выражения для  показывает, что коэффициенты зависят не только от степени полинома, но и от номера интервала . В соответствии с выражением (7) результирующая оценка полезного сигнала через системы ортогональных многочленов запишется в следующем виде:

кусочное размножение оценка сигнал

      (10)


где индекс  в  показывает степень аппроксимирующего полинома на каждом скользящем интервале.

Выражение (10) представляет собой обобщенное уравнение, которое позволяет получить оценку полезной составляющей предлагаемым способом разбиения с последующей аппроксимацией на каждом скользящем интервале полиномом произвольной степени . Так как пространство аппроксимирующих функций (2) ограничено условием , то на основе выражения (10) можно получить частные случаи при ,  и  [9].

В случае, когда , выражение (10) запишется в следующем виде:

 (11)

При  выражение (10) имеет вид:

                       (12)

При  выражение (10) имеет вид:

                      (13)


Выражения (11)–(13) эквивалентны ранее полученным выражениям в работе [2]. В отличие от выражений, полученных на основе неортогональных полиномов [2], использование выражения (10) позволяет увеличить степень аппроксимирующего полинома без пересчета ранее полученных оценок. Анализ выражений (12) и (13) показывает, что степень аппроксимирующего полинома может быть увеличена путем вычисления дополнительных членов суммы. Такое свойство (10) позволяет модифицировать предлагаемый способ оценивания. Обладая дополнительной информацией о выделяемом полезном сигнале на локальном участке обработки, можно увеличивать или уменьшать степень аппроксимирующего полинома, тем самым ввести элементы адаптации.

На рис. 2 представлен пример разбиения исходной реализации на перекрывающиеся интервалы одинаковой длины и аппроксимации на каждом из функцией пространства (2) при , при этом модель исходной реализации представляет собой функцию этого же пространства с .

Рис. 2. Пример разбиения исходной реализации на пересекающиеся интервалы постоянной длины и аппроксимации на каждом из них значений сигнала линейной функцией


На рис. 3 представлены результаты вычисления оценки сигнала на основе выражения (12). Кривая 1 представляет собой исходный сигнал, а кривая 2 – его оценку. Множество оценок полезного сигнала, полученные в каждый момент , представлены крестиками (рис. 3). На основе их значений в соответствии с выражением (12) получаем оценку полезной составляющей (кривая 2). Несовпадение исходной реализации с оценкой полезной составляющей на начальном участке реализации объясняется тем, что количество оценок полезной составляющей в каждый момент  является неодинаковым и увеличивается до момента . При  количество оценок постоянно и равно длине выбранного ранее окна , а ошибка оценки полезного сигнала меньше, чем .

Рис. 3. Пример получения множества оценок полезного сигнала в каждом сечении исходного процесса (1) и формировании на их основе результирующей оценки (2) при отсутствии аддитивной шумовой составляющей

На рис. 2 и 3 представлена только часть реализации. Для третьего интервала оценивания  результат оценки схож с первым интервалом .

Недостатком предлагаемого метода обработки является то, что для первых и последних  значений исходной реализации множество оценок содержит различное количество элементов (рис. 1). Следствием этого является увеличение ошибки оценки полезной составляющей на интервалах  и  (рис. 3). Для уменьшения погрешности оценки полезной составляющей на интервалах  и  предлагается модифицировать разбиение исходной реализации на этих интервалах. Для этого вводится дополнительный параметр , который имеет смысл минимальной длины окна разбиения.

Для осуществления разбиения исходной реализации задается значение  и , при этом необходимо, чтобы выполнялось условие . На начальном интервале  исходная реализация разбивается на перекрывающиеся интервалы с фиксированной левой границей и нарастающей длиной интервала разбиения от  до , как показано на рис. 4.

Рис. 4. Пример модифицированного разбиения исходной реализации на перекрывающиеся интервалы с изменяющейся длиной интервала разбиения в начале и конце выборки

Страницы: 1, 2


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.