рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Курсовая работа: Технология производства листового стекла

-с изоляцией поверхности варочного бассейна печи;

-с применением средств интенсификации процессов стекловарения, нижний подвод газогорелочных устройств с позонной регулировкой;

-с применением рациональной конструкции студочного бассейна (пережим, холодильник, заглубленный в стекломассу).

Конструкция печи делится на верхнее и нижнее строение. К верхнему строению относятся – бассейн с подвесными стенами и сводом, т.е. варочный бассейн, студочный бассейн, пережим и загрузочный карман. Для разделения варочного и студочного бассейна в качестве разделительного устройства применяют протоки, пережим, холодильники. На печах ОсОО «Интергласс» применяют пережим и холодильники. В наших печах глубина варочного бассейна более 1,5 м не применяется:

-ЛТФ-1 : глубина 1450мм, ширина 9800мм, длина 60200мм;

от 5-ой горелки до пережима 9050мм, длина 44680мм.

К нижнему строению относятся – регенераторы, подрегенеративные камеры, борова, шиберная система, переводные клапаны, каналы для отвода отходящих газов, фундамент и колонны. Регенераторы – камеры для уменьшения потерь тепла, т.е. горячие отходящие газы, проходя через регенератор нагревают кирпичную кладку, которая в свою очередь после перевода пламени отдает тепло проходящему через регенератор воздуху.

Горелки – устройства для приема и смешивания топлива и воздуха и подачи смеси в пламенное пространство и организации факела, а также связывающие элементы между верхним и нижним строениями. На наших печах по 6 пар горелок. Для равномерного нагрева шихты и стекломассы делают перевод пламени с одной стороны на другую :

-на ЛТФ-1,2 через 20 мин

Печь отапливается природным газом.

На наших печах расход газа по зонам следующий:

-на ЛТФ-1 I зона – 1750+50 нм3/ч; II зона – 2150+50 нм3/ч; III зона – 200+30 нм3/ч; общий расход 4240+50 нм3/ч.

Стекловаренная печь оснащена автоматизированной системой управления и контроля.

Варка стекла начинается с загрузки шихты и стеклобоя в стекловаренную печь через загрузочный карман с помощью роторных (ЛТФ-1,2,6) и стольного типа (ЛТФ-4) загрузчиков. Содержание боя составляет 15 – 35%. По мере продвижения вдоль стекловаренной печи под действием высоких температур в шихте происходят различные процессы.

Процесс стекловарения состоит из пяти стадий:

1.  силикатообразование;

2.  стеклообразование;

3.  осветление;

4.  гомогенизация;

5.  студка.

Силикатообразование – на этом этапе образуются силикаты и другие промежуточные соединения, появляется жидкая фаза за счет плавления эвтектических смесей и солей. Шихта в период нагревания претерпевает изменения. Из нее испаряется влага, обезвоживаются гидраты, разлагаются некоторые соли. Сульфат натрия и кремнезем переходят в другие кристаллические модификации. В процессе полиморфных превращений зерна кварца увеличиваются в объеме и растрескиваются. При температуре 300-400оС начинают взаимодействовать между собой карбонаты и сульфаты образуются промежуточные сложные соединения и жидкие эвтектики. При дальнейшем повышении температур вступают в реакцию песок и глиноземистые материалы, образующие с солями различные силикаты. Одновременно образуется жидкая фаза, с появлением которой протекание реакций резко ускоряется. Возникшие в шихте силикаты и не прореагировавшие компоненты вместе с жидкой фазой образуют к концу этапа плотную спекшуюся массу. Этап завершается при 950 – 1150оС – для стекол обычного состава.

На стадии стеклообразования происходит растворение зерен кварцевого песка в силикатном расплаве и одновременно взаимное растворение силикатов друг в друге. Этот процесс имеет двойную природу – химическую и физико-химическую. Зерна песка растворяются в расплаве с образованием силикатов щелочных материалов, но реакция замедляется из-за накапливания продуктов реакции (силикатов) вокруг зерна кварца. Освобождение зерна кварца от силикатов происходит медленно вследствие движения потоков масс и диффузионных процессов. Скорость стеклообразования зависит от вязкости расплава и поверхностного натяжения. Высокая вязкость затрудняет диффузию, а при увеличении поверхностного натяжения ухудшается смачиваемость зерен песка. На растворение зерен кварца оказывают влияние гранулометрический состав, форма зерен, содержание в зернах кварца примесей. К концу процесса стеклообразования, завершающегося при температурах 1200 – 1250оС, стекломасса становится прозрачной, в ней отсутствуют не проваренные частицы, однако содержится большое количество пузырей и свилей.

Процесс стеклообразования протекает медленнее, чем силикатообразование и составляет 60 – 70% общего времени, затраченного на процесс стекловарения. Скорость процесса стеклообразования зависит от состава стекла и температуры варки.

Осветление -характеризуется выделением из расплава газов, пересыщающих стекломассу после завершения процессов стеклообразования, и протекает при максимальной температуре варки 1560 – 1600оС. Практически на ОсОО «Интергласс» максимальная температура по верхнему строению печи: на ЛТФ1,2 1560оС, на ЛТФ-4 1540оС. Главный источник газов – шихта, в которой газы находятся в химически связанном виде и в виде гидратной влаги. При протекании реакций силикато- и стеклообразования газы выделяются в атмосферу печи, однако часть пузырьков самых разных размеров остается в расплаве. Скорость освобождения стекломассы от пузырей определяется вязкостью стекломассы, размером пузырей, давлением газов в пузырьках. Когда в стекломассе остаются только крупные пузыри температуру постепенно снижают, чтобы прекратить образование новых пузырей, а крупные пузыри выходят из стекломассы и при более низкой температуре. К концу этой стадии стекломасса освобождается от видимых газовых включений.

Гомогенизация – на этом этапе происходит усреднение расплава по составу, он становится химически однородным. Гомогенизация и осветление протекают одновременно при одних и тех же температурах. Гомогенизации способствуют выделяющиеся из стекломассы газовые пузыри, повышение температуры и связанные с этим понижение вязкости, повышение скорости диффузии и массообмена.

Студка – это завершающий этап стекловарения. На данном этапе происходит подготовка стекломассы к формованию, для чего равномерно снижают температуру на 300 – 400оС и добиваются необходимой для выработки вязкости стекла.

Главное условие во время охлаждения – непрерывное медленное снижение температуры без изменения состава и давления газовой среды. Нарушение этого условия может вызвать сдвиг установившегося равновесия газов и образование так называемой вторичной мошки.

Схема процесса варки стекла представлена на рис. 1

В стекломассе, находящейся в ванной печи, существуют различные конвекционные потоки. Основные два цикла конвекционных потоков – сыпочный и выработочный, которые направлены по продольной оси бассейна.


рис

Внутри сыпочного цикла стекломасса движется сначала по верху от зоны максимальных температур к загрузочной части печи, тормозя продвижение шихты и варочной пены в сторону выработки и отдавая им часть своего тепла, затем опускается вниз и движется в обратном направлении к зоне максимальных температур, где снова поднимается кверху и замыкает цикл. Внутри выработочного цикла стекломасса движется также, но уже в противоположную сторону – к выработке. Часть стекломассы вырабатывается, а остальная часть опускается вниз и движется обратно в варочную часть печи к зоне максимальных температур, где поднимается кверху и замыкает выработочный цикл.

Вертикальная граница раздела этих циклов в зоне максимальных температур называется квельпунктом.

Процесс гомогенизации стекломассы протекает одновременно с процессами стеклообразования и осветления при высоких температурах. Чем полнее протекают диффузионные процессы в силикатном расплаве на стадиях стеклообразования и осветления, тем однороднее получается стекломасса, а поскольку для заданного состава стекла скорость диффузии определяется уровнем температур и вязкости, решающим фактором обеспечения химической однородности стекломассы, является повышение температур варки. После окончания процесса осветления, протекающего при максимальных температурах, процесс химической гомогенизации продолжается и при последующем понижении температуры, но менее интенсивно и постепенно затухает.

В конце варочного бассейна температура стекломассы достигает 1390 – 1400оС. Для интенсификации процесса студки стекломассы на пережиме печи используют заградительное устройство типа холодильник, который погружают в стекломассу на глубину до 450 мм, что в свою очередь, позволяет снизить температуру.

По мере продвижения стекломассы к выработке происходит постепенное ее охлаждение. Понижение температуры стекломассы определяется конструкцией студочного бассейна и закладывается при разработке проекта печи.

Для подготовки стекломассы к выработке, выравнивания термической однородности стекломассы применяют вдувание воздуха в подсводовое пространство студочной части печи, что позволяет снизить колебания температуры стекломассы.

ПОРОКИ СТЕКЛОМАССЫ

ГАЗОВЫЕ ВКЛЮЧЕНИЯ. Пузыри могут быть различных размеров и формы. Мельчайшие пузыри, размером менее 0,8мм называют «мошкой». Располагаются они на поверхности стекла или в его толще.

Первичные пузыри образуются в результате неполного удаления газообразных продуктов разложения шихты, остаются в стекломассе при затянувшемся осветлении. Это происходит при неравномерном зерновом составе песка, недостатке осветлителей, сухой шихте, недостаточном времени пребывания стекломассы в зонах варки и осветления, низких температурах в зоне осветления, завышенных съемах стекломассы, недостаточном количестве теплоты или ее неправильном распределении по длине зон варки и осветления, что ведет к ослаблению потоков сыпочного цикла. Первичные пузыри обычно имеют мелкие размеры.

Вторичные пузыри чаще всего возникают при вторичном нагревании стекломассы, содержащей остатки карбонатов и сульфатов натрия. Опасная температура разложения этих остатков 1150-1200оС. Если вторичный нагрев неизбежен, то необходимо избегать перегрева и вспенивания стекломассы. Вторичные пузыри образуются на границе фаз:

стекломасса – включение; стекломасса – шихтные остатки; стекломасса  свили. Источником пузырей служат также и огнеупоры (вкрапления в огнеупорах железа, углерода и т.д.).

Чем ближе к месту выработки образуются пузыри, тем больше их размер.

СТЕКЛОВИДНЫЕ ВКЛЮЧЕНИЯ. Свили – включения стекла другого состава, отличаются от основного стекла по химическому составу и физико-химическим свойствам. Причины их образования – неполное растворение и гомогенизация зерен кварца; неточное дозирование компонентов шихты; плохое смешивание шихты; загрузка боя другого химического состава; вовлечение застойных зон в выработочный поток; неправильное распределение теплоты; свили от огнеупорных материалов; продукты взаимодействия огнеупоров с пылевидными компонентами шихты. Способность свилей растворяться зависит от поверхностного натяжения.

ТВЕРДЫЕ ВКЛЮЧЕНИЯ. Это опасный порок стекломассы. Они вызывают локальные напряжения, которые снижают механическую прочность и термическую устойчивость изделий и часто приводит к самопроизвольному разрушению. Твердые включения могут быть:

-шихтными – непроварившиеся компоненты шихты, которые образуются в результате содержания примесей тяжелых минералов в песке, неоднородности шихты, не хватки плавней, расслоения шихты, неправильного режима варки, образования кремнеземистая пленка;

-огнеупорными – образуются в результате использования некачественного огнеупора, нарушения эксплуатации стекловаренной печи (перелеты пламени, колебание уровня стекломассы и др.), а также в случае попадания огнеупора в печь со стеклобоем;

-сульфатными (щелочными);

-продуктами кристаллизации стекломассы;

-посторонними загрязнениями («черные точки», металл и др.).

§ 2.3 ПРОЦЕСС ФОРМОВАНИЯ ЛИСТОВОГО СТЕКЛА НА РАСПЛАВЕ МЕТАЛЛА

Способ формования листового стекла на поверхности расплавленного металла (флоат – процесс) впервые предложили американцы Хил и Хичкок независимо друг от друга в 1902г. Хичкок усовершенствовал свое изобретение в 1925г.

Сущность этого способа непрерывного производства листового стекла состоит в том, что регулируемое количество стекломассы в виде струи поступает из стекловаренной печи на поверхность расплавленного металла и, продвигаясь по ней, превращается в ленту стекла с огненно – полированными поверхностями.

В результате контакта нижней поверхности ленты стекла с идеально гладкой поверхностью расплавленного металла и огневой полировки ее верхней поверхности (под действием поверхностного натяжения) достигается исключительное качество поверхности листового стекла.

Критерии выбора металла: металл должен быть жидким при температурах 600 – 1050оС; должен иметь плотность больше плотности стекла, т.е. больше 2500кг/м3,чтобы удерживать ленту на поверхности; упругость пара при1027 оС должна быть меньше 13,33Па. Этим требованиям отвечает олово (Sn):

-температура плавления - 232 оС;

-температура кипения 2623 оС;

-плотность при 1050оС составляет 6500 кг/м3;

-упругость пара при1027 оС равна 0,25Па.

Первые образцы флоат-стекла были получены в 1953г. английской фирмой «Пилкингтон».

Процесс формования ленты стекла на расплаве металла осуществляется в ванне расплава, представляющей собой тепловой агрегат, содержащий слой расплавленного металла, защитную восстановительную атмосферу, средства подачи стекломассы и вывода ленты из ванны расплава в печь отжига.

Подача стекломассы из стекловаренной печи в ванну расплава осуществляется через сливной узел, состоящий из мелкого выработочного канала, сливного лотка, отсекающего и дозирующего шиберов. С помощью отсекающего шибера производится прекращение подачи стекломассы в ванну расплава. Дозирующим шибером осуществляется регулируемая подача стекломассы в ванну расплава на формование.

Дно мелкого выработочного канала и лоток выполняются из плавленного огнеупора типа бакор со сроком службы не менее 3-х лет. Шибера изготовлены формованием из порошка кварцевого стекла на кремнеземистой связке. Срок службы шиберов не менее 3-х месяцев.

Температура стекломассы в выработочном канале поддерживается:

-на ЛТФ-1 1100 - 1115 оС (в зависимости от задания)

-на ЛТФ-2 1095 – 1115оС (в зависимости от задания)

-на ЛТФ-4 1095 - 1160 оС (в зависимости от задания)

Температура на выходе из ванны расплава:

-на ЛТФ-1 590-610 оС (16 зона по пирометру 620+1оС)

-на ЛТФ-2 610-620 оС (в зависимости от задания)

-на ЛТФ-4 620 +5 оС

Ванна расплава имеет огнеупорную футеровку, выполненную из шамотных брусьев. Срок службы огнеупоров ванны расплава до капитального ремонта не менее 10 лет. Проектные длина ванн расплава и уровень олова на ОсОО «Интергласс» составляют:

-ЛТФ-1 длина 49,709 м, уровень олова 50 мм в мелкой части, 70 мм в средней, 100-110 мм в глубокой части;

-ЛТФ-2 длина 40,4 м, уровень олова 55 мм в мелкой части и 105 мм в глубокой;

-ЛТФ-4 длина 30,769 м, уровень олова 50 мм в мелкой части и 100 мм в глубокой.

Ванна расплава снабжена:

-сводовыми нагревателями, обеспечивающими в период разогрева ванны температуру по газовому пространству не менее 1000оС и имеющими срок службы не менее 2-х лет;

-системой контроля и плавного регулирования электрической мощности нагревателей;

-системой регулирования потоков расплавленного олова (рассекатели, ограничители);

-системой телевизионного контроля границ стекломассы в зоне ее максимального растекания, в зонах формования ленты стекла с помощью утоняющих устройств;

-стационарными контрольно-измерительными приборами для контроля температуры стекла в выработочном канале, температуры олова в ванне, скоростей растягивания ленты утоняющими устройствами, количества и параметров качества защитной атмосферы.

Процесс формования ленты стекла на расплаве металла делится на следующие технологические операции, которым соответствуют последовательные участки ванны расплава:

- непрерывная регулируемая подача стекломассы из выработочного канала стекловаренной печи и ее слив на расплав олова в головном участке ванны расплава;

- растекание стекломассы на поверхности расплава олова до образования плоского слоя стекла равновесной толщины;

- «активное» формование ленты стекла, где под действием сил вытягивания, прилагаемым к формуемой ленте, она приобретает заданную толщину и ширину;

- охлаждение формуемой ленты до температуры ее выхода из ванны расплава на тянущие валы.   

Стекломассу сливают на расплав олова в головной части с носика лотка. Растекание стекломассы ограничивается задним смачиваемым брусом, рестрикторами и боковыми ограничителями. Стекломасса, которая течет от носика лотка к заднему брусу, образует «затек». Важнейшим требованием в процессе формования ленты стекла, является постоянное движение стекломассы в «затеке», чтобы не допустить ее застоя и кристаллизации. В конце участка растекания поток стекломассы под действием сил тяжести и поверхностного натяжения формуется в плоскопараллельный слой толщиной около 7мм. При свободном растекании равновесие сил, действующих на стекломассу, приводит к установлению толщины слоя 6,5-6,8мм, называемого равновесной толщиной. Непременным требованием для получения ленты стекла с высоким качеством по разнотолщинности является достаточная завершенность процесса растекания.

На участке «активного» формования ленту стекла в вязком состоянии подвергают действию сил вытягивания. Существует два способа вытягивания стекла: способ прямого вытягивания и способ продольно-поперечного вытягивания. Продольное вытягивание осуществляют действием сил, передаваемых от роликов печи отжига вдоль затвердевающей ленты. Продольно-поперечное растягивание ленты выполняют с помощью утоняющих машин.

На участке охлаждения теплосъем осуществляется через футеровку ванны и дополнительно холодильниками различных конструкций. Величину теплосъема регулируют изменением количества холодильников. Выравнивание температуры олова по ширине ванны может быть достигнуто изменением электронагрева по участкам и установкой ограничителей потоков олова и холодильников.

Для защиты металлического расплава олова от окисления в ванну расплава подается защитная газовая атмосфера, состоящая из азота и водорода. Подача защитной атмосферы в ванну расплава осуществляется через свод.

Станция получения азотно-водородной смеси (АВС) состоит из 8 установок АВУ-450 общей мощностью 3600м3/ч. Станция предназначена для выработки азотно-водородной смеси, которая содержит от 2 до 12% водорода, до 0,0005% кислорода, СО2 – 0,005%, СО – 0,01%, NO 0,0001%, содержание азота от 76 до86%. Давление на выходе со станции до 0,3кгс/см2

Природный газ и компрессорный воздух подается в цех АВС с давлением до 6кгс/см2. РДУКами (регулятор давления универсальный Казанцева) давление понижается и удерживается до рабочего давления 0,9кгс/см2. Далее газ очищается от примесей серы и сернистых соединений на сероочистках. Очищенный от сернистых соединений природный газ подают через инжекционную горелку в смеситель камеры сжигания. Туда же поступает и компрессорный воздух. Продукты сжигания из камеры подаются в конвектор, где происходит окисление окиси углерода до двуокиси углерода. После конвектора полученный газ проходит систему холодильников, циклонных каплеуловителей, где происходит отделение влаги от газа. Полученный газ подается на адсорберы для очистки от двуокиси углерода и оставшейся влаги.

Защитная атмосфера должна отвечать следующим требованиям по содержанию газов и примесей:

-азота – 99-84%;

- водорода – 1-16%;

- кислорода не более 0,0005%;

- влаги – 0,001г/м3 или точка росы – минус 60оС.

Азотно-кислородная станция (АКС) предназначена для получения азота высокой чистоты и оснащена 8 азотными установками типа А-0,6 с производительностью по азоту 600 м3/час при давлении 5 – 6 кгс/см2 (0,5 – 0,6 мПа) и периодической выдачи 50м3/час азота той же концентрации под давлением 11 – 13 кгс/см2. Получение азота происходит путем охлаждения воздуха с последующим разделением на азот и кислородную фракцию.

Воздух, очищенный в воздушном фильтре от механических примесей и сжатый в компрессоре до давления Р=50 – 70 кгс/см2, после холодильника направляется в блок теплообменников, который состоит из двух параллельно работающих теплообменных аппаратов, имеющих по три секции: ожижительную, детандерную и основную – все три секции смонтированы друг над другом. В качестве обратного потока в первом теплообменнике используется отбросный газ (кислородная фракция после разделения с содержанием кислорода около 60%), во втором – 6-ти атмосферный продукционный азот.

В секциях ожижителя воздух охлаждается до температуры +6-+15оС при этом основная масса содержащихся в воздухе паров воды конденсируется. Из ожижителей воздух поступает во влагоотделитель, где из воздуха выделяется сконденсированная капельная влага и затем периодически удалается через продувочный вентиль. После влагоотделителя воздух направляется в цеолитовый блок очистки. Очищенный воздух возвращается в детандерные секции блока теплообменников, где охлаждается до температуры около –50оС и разделяется на два потока: примерно 27% воздуха отбирается в турбодетандер, а оставшаяся часть дополнительно охлаждается в основных секциях теплообменников. В турбодетандере воздух расширяется до рабочего давления нижней колонны 8 11 кгс/см2 и за счет совершения внешней работы при расширении охлаждается до температуры около –90оС.

Разделение воздуха происходит в аппарате двукратной ректификации. Ректификация в нижней колонне протекает при давлении 8 –11 кгс/см2, в верхней колонне при давлении 5-6 кгс/см2. Воздух поднимается вверх по колонне в виде насыщенного пара. Навстречу ему по тарелкам стекает жидкость из трубок конденсатора. В результате многократно повторяющегося процесса массообмена пара и жидкости на тарелках колонны происходит постепенное обогащение пара азотом, а жидкости - кислородом.

В верхней части верхней колонны собирается чистый азот с концентрацией 0,0005% кислорода. Часть этого азота конденсируется в трубках верхнего конденсатора, образуя дополнительную флегму для орошения верхней колонны. Несконденсированный чистый азот из верхней колонны поступает в межтрубное пространство второго теплообменника, нагревается до температуры на 4-6оС ниже, чем температура входящего воздуха и в виде продукта направляется потребителю.

Водородная станция предназначена для получения водорода и оснащена 8 электролизерами СЗУ-40 с производительностью по водороду 40м3/час каждый.

Электролиз – это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через водный раствор щелочи.

Выделяющиеся при электролизе воды водород и кислород вместе с циркулирующим в системе электролитом поступает в разделительные колонки, которые предназначены для отделения газов от щелочи, охлаждения электролита и обеспечения его непрерывной циркуляции. Из разделительных колонок газы поступают в промыватели, где очищаются от щелочного тумана и охлаждаются. Из электролизных отделений водород поступает на очистку от кислорода, которая осуществляется на палладиевом катализаторе в контактном аппарате. На поверхности катализатора кислород, содержащийся в водороде, реагирует с водородом, образуя воду. Понижение в контактном аппарате температуры (температуры выходящего водорода) ниже 100оС недопустимо, т.к. становится возможной конденсация водяных паров на катализаторе.

Перед подачей водорода на первую ступень осушки его необходимо охладить: для чего водород проходит холодильник и влагоотделитель.

Первая ступень осушки водорода осуществляется в отрегенерированном адсорбере с силикагелем. Горячий водород проходит снизу вверх через слой силикагеля, десорбируя из него влагу. Далее водород охлаждается и через влагоотделитель идет на вторую ступень осушки, в предварительно отрегенерированный осушитель. Водород второй ступени осушки поступает в один из осушительных баллонов, заполненных цеолитом. В адсорберах второй ступени осушки осуществляется глубокая осушка водорода, а также очистка водорода от примесей СО и СН. Очищенный и осушенный водород через фильтры подается в газгольдеры, а оттуда потребителю.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.