рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Реферат: Механизмы и несущие конструкции радиоэлектронных средств

   4.4.5. Передаточное отношение М с гибким звеном (рис. 4.12) определяют из условия равенства линейных скоростей в точках касания этого звена с основными жесткими:

i12 = omega1/omega2 = AK2/AK1 . (4.12)

Глава 5. ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ

5.1. Задачи анализа; основные понятия и определения.

   Задачи динамического анализа:

   а) определение усилий, действующих на звенья М при его работе, или силовой анализ;

   б) определение законов движения М под действием приложенных усилий, или динамика механизма.

   Сила - количественная мера механического взаимодействия тел.

 Система сил - совокупность сил, действующих на звено. Система может быть уравновешенной, если под действием ее тело находится в равновесии. Равнодействующая - сила, заменяющая действие системы сил. Момент силы -  векторное произведение радиуса-вектора точки приложения силы на саму  силу (рис. 5.1) : T = (r) a x F ; плечо силы, создающей момент (расстояние до линии действия силы) : h = (r) a*sin (alfa) .

5.2. Условия равновесия звеньев под действием системы сил.

   Звено находится в равновесии, если равнодействующая сила R0 и ее момент T0 равны нулю:

R0 = (Rx**2 + Ry**2 + Rz**2) **0.5 = 0;

T0 = (Tx**2 + Ty**2 + Tz**2) **0.5 = 0. (5.1)

   Следовательно, сумма проекций всех сил, действующих на звено, а также сумма проекций моментов этих сил на каждую из координатных осей в отдельности должны равняться нулю:

sum (Fix) = sum (Fiy) = sum (Fiz) = 0;

sum (Tix) = sum (Tiy) = sum (Tiz) = 0. (5.2)

Разновидности уравнений равновесия для плоской системы:

sum (Fix) = 0; sum (Fiy) = 0; sum (Tiz) = 0;

sum (Fix) = 0; sum (Tiy) = 0; sum (Tiz) = 0; (5.3)

sum (Tix) = 0; sum (Tiy) = 0; sum (Tiz) = 0;

5.3. Характеристика усилий, действующих на звенья механизма.

   5.3.1. Классификация усилий. Силы и моменты, действующие на  звенья М, делят на три группы:

   а) внешние силовые воздействия;

   б) усилия, возникающие в звеньях вследствие действия ускорений;

   в) внутренние усилия в кинематических парах - реакции.

   5.3.2. Внешние усилия: движущие и сопротивления. Работа движущих усилий dA = F*ds положительна, сопротивлений - отрицательна (рис.

 5.2) . Усилия полезного сопротивления приложены к выходному звену М, движущие - к входному, ведущему.

   5.3.3. Силы веса. Возникают в поле тяготения, пропорциональны массе звена m и ускорению тяжести g : G = m*g . Условно приложены в центре масс - точке, в которой может сосредоточена вся масса звена,  причем состояние его под действием сил не изменяется. Координаты центра масс для тела с обьемом V (рис. 5.3) :

 (x)c = (1/V) *int (x*dv) V; (y) c = (1/V) *int (y*dv) V;

 (z)c = (1/V) *int (z*dv) V . (5.4)

   Для плоского сечения площадью S координаты центра масс:

    (x)c = (1/S) *int (x*ds) S; (y) c = (1/S) *int (y*ds) S . (5.5)

   5.3.4. Инерционные параметры звеньев: масса при поступательном движении и моменты инерции при вращательном - меры инерционности звеньев. Моменты инерции определяют относительно соответствующей координатной оси: Jx, Jy, Jz, или относительно какой-либо точки - Ja ; в последнем случае Ja = Jxa + Jya + Jza . Момент инерции относительно оси, проходящей через центр масс, называют главным моментом инерции.

   Для тела обьемом V с равномерно распределенной массой момент инерции

J = int (ro**2*dm) V, (5.6)

   где ro - радиус вращения элементарной массы dm.

   Моменты инерции некоторых тел относительно осей, проходящих через центры масс:

- шара массой m и радиусом R:

Jc = 0.4*m*R**2 ;

- цилиндра массой m и радиусом R, относительно оси, прохо дящей через центр масс и параллельной образующей:

Jc = 0.5*m*R**2 ;

- тонкого стержня длиной L и массой m, относительно оси, проходящей через центр масс и перпендикулярной продольной оси стержня:

Jc = (m*L**2) /12 .

   Момент инерции относительно оси, удаленной от центра масс на расстояние a (рис. 5.4) :

Ja = Jc + ma**2 .

   5.3.5. Инерционные усилия. Возникают при действии ускорений,  пропорциональны этим ускорениям и массе звена или моменту инерции.           

Сила инерции: Fи = -m* (w)c, условно приложена в центре масс и пропорциональна его ускорению (w) c.

   Момент инерционной силы: Tи = -Jc* (eps) c, где (eps) c - угловое ускорение, Jc - момент инерции относительно центра масс.

   В сложном движении, представляющем сумму поступательного и вращательного, на тело действует инерционная сила Fи и момент инерционной силы Ти (рис. 5.5) .

   5.3.6. Реакции в кинематических парах. Взаимно уравновешенные усилия взаимодействия звеньев в подвижных соединениях. Реакцию можно  представить как сумму нормальной (R) n и касательной (R) t (рис. 5.6) .

 Касательная - сила трения, сопротивление тангенциальному смещению поверхностей - функция нормальной силы.

5.4. Краткая характеристика сил трения.

   5.4.1. Трение имеет двойственную молекулярно - механическую природу, зависит как от взаимодействия молекулярных структур поверхностных слоев, так и от их механического сцепления. Силы трения зависят от четырех групп факторов:

   а) вида трения - скольжения или качения;

   б) свойств поверхностных слоев контактирующих деталей;

   в) режима трения;

   г) формы поверхностей кинематической пары.

   5.4.2. Виды трения. Трение скольжения-процесс, при котором одни и те же зоны первой контактирующей поверхности приходят в соприкосновение с новыми зонами другой (рис. 5.7) .

   Углы при трении: gamma - угол давления; fit - угол трения. Коэффициент трения f = tg (fit) .

Fт = (R) t = (R) n*tg (fit) = f* (R)n . (5.7)

   В трущейся паре может возникнуть самоторможение, когда движение  под действием внешней силы P невозможно, как бы велика она ни была, т.к. при этом P < Fт ; условие самоторможения можно записать в виде: gamma < < fit .

   Трение качения - процесс, при котором все новые зоны обеих контактирующих поверхностей вступают в контакт, а мгновенная ось вращения проходит через зону контакта (рис. 5.8, а) . При качении нормальная составляющая реакции сдвинута относительно нормали, проходящей через середину зоны контакта на расстояние k, которое называют коэффициентом трения качения (рис. 5.8, б) .

   5.4.3. Вторая группа факторов, определяющая физико-механическое и микрогеометрическое состояние контактирующих поверхностей: молекулярное строение, структура поверхностного слоя, внутренние напряжения в  нем, твердость, упругость и другие механические свойства; микрорельеф, присущий каждой технической поверхности, и другие. В частности, микрорельеф, согласно ГОСТ 2789-73, описывается десятью параметрами, среди которых, кроме параметров, характеризующих высоту и шаг микронеровностей, должны быть их форма и направление "в плане".

   5.4.4. Третья группа факторов - режим трения: удельное давление, относительные скорости, температура в контактных зонах, наличие или отсутствие на поверхностях трения оксидов или смазочных материалов, свойства этих третьих веществ.

   Коэффициенты трения скольжения и качения, учитывающие влияние  первых трех групп факторов, исследованы экспериментально и приведены в справочниках, для плоских поверхностей при скольжении и для плоской и цилиндрической - при качении.

   5.4.4. Влияние формы контактирующих поверхностей. Учитывается  введением приведенных коэффициентов трения: отношения внешних сил движущей P и сжимающей контактирующие поверхности N: f' = P/N. При наличии трения силу P находят через f' :

P = Fт = f'*N, (5.8)

   где Fт - приведенная сила трения в кинематической паре.

   При качении

P = k*N/r = f'*N,

   где f' = k/r - приведенный коэффициент трения качения.

Глава 6. Методы определения реакций в кинематических парах и динамика механизма..

6.1. Методы определения реакций в кинематических парах.

   6.1.1. Сущность метода определения реакций. Для большинства методов она сводится к составлению и решению уравнений равновесия для  каждого звена, в которые реакции входят как неизвестные. Внешние силы, скорость и ускорение для всех звеньев М должны быть известны; определяют реакции и движущие усилия на ведущем звене М. Инерционные силы  учитываются на основе принципа д'Аламбера: в каждое мгновение движения любое тело можно рассматривать находящимся в равновесии под действием системы сил, в которую входят и силы инерции.

   6.1.2. Аналитический метод определения реакций. Механизм условно расчленяют на звенья, нагружая каждое внешними усилиями, а в кинематических парах - неизвестными составляющими реакций (рис. 6.1.) . Систему уравнений равновесия для одного звена решить нельзя, так как число неизвестных больше числа уравнений, поэтому звенья обьединяют в статически определимые группы, для которых выполняется условие sum[i*p (i)] -qs =6k.

   Пример расчленения M на группы показан на рис. 6.2, а схема определения реакций в группе - на рис.6.3.

   Уравнения равновесия для обоих звеньев группы:

   sum (Fix) = Rb''*cos (fi2) - Rb'*sin (fi2) - F2*cos (alf2) - F3*cos (alf3) - Rd*sin (fit) = 0;

   sum (Fiy) = Rb''*sin (fi2) - Rb'*cos (fi2) - F2*sin (alf2) - F3*sin (alf3) - Rd*cos (fit) = 0;

   sum (T2c) = Rb'*l2 - F2*l2s*cos (pi/2 - alf2 + fi2) - T2 = 0;

   sum (T3c) = F3*l3'*cos (pi/2 - alf3 + fi3) - T3 - Rd*sin (fit) *h3y +

+ Rd*cos (fit) *h3x = 0.

   Решение системы позволяет найти реакции Rb, Rc и Rd и их составляющие.

   6.1.3. Графоаналитический метод планов сил. Уравнения статики  решают графическим построением плана сил - векторной диаграммы, на которой силы представлены векторами. План сил для группы звеньев показан на рис. 6.3, в. Составляющую реакции Rb' и плечо h3x для реакции Rd находят так же, как и при аналитическом решении.

6.2. Расчет сил и моментов трения.

   6.2.1. Силы трения - касательные составляющие реакций - находят  по приведенным коэффициентам трения f' = tg (fit), если известны полные  реакции в кинематических парах или их нормальные составляющие.

Последовательность определения приведенных коэффициентов трения:

   а) из условия равновесия находят нормальные составляющие реакций наконтактных поверхностях;

   б) по известным коэффициентам трения на плоских поверхностях рассчи тывают силы трения на реальных поверхностях;

   в) из условий равновесия определяют силы движущие;

   г) находят приведенный коэффициент трения как отношение движущего уси лия к усилию, сжимающему поверхности звеньев в паре.

   6.2.2. Приведенные коэффициенты трения для кинематических пар с трением скольжения:

   а) клиновидная направляющая прямолинейного движения (рис. 6.4) :

f' = f*[cos (alf1) + cos (alf2) ]/[sin (alf1 + alf2) ], (6.1)

   частный случай: alf1 = alf2 = alfa, f' = f/sin (alfa) ;

   б) цилиндрическая направляющая для прямолинейного или вращательногодвижения (рис.6.5) - для произвольного распределения давления по цилиндрической поверхности q = q (fi) :

   f' = f{int[q (fi) *dfi]0, alfa}/{int[q (fi) *cos (fi) *dfi]0, alfa}, (6.2)

при q (fi) = q0*cos (fi) и alfa = Pi/2 f' = 4f/Pi ;

   в) трение на торцовой поверхности цилиндра (рис. 6.6) :

   f' = 1.333*f* (R**2 + R*r + r**2) / (R+ r) **2 ; (6.3)

   г) трение в винтовой паре (рис. 6.7):

   для прямоугольной резьбы:

T = 0.5*Q*d*f' ; f' = tg (gamma + fit) ; (6.4)

   для трапецевидной и треугольной резьб:

f' = tg[gamma + arc tg (f/sin (alfa) )] ; (6.5)

   самоторможение в винтовой паре наступает при gamma < fit; в этом случае сила Q не сможет заставить винт вращаться.

   6.2.3. Приведенные коэффициенты трения для кинематических пар с трением качения:

   а) платформа на катках (рис. 6.8) :

f' = (k1 + k2 )/d ; (6.6)

   б) подшипник качения (рис. 6.9) :

T = 0.5*Q*fs*d1; f' = beta*k* (1+ d1/d3) /d1 ; (6.7)

   для реальных конструкций подшипников beta = 1.4 - 1.6.

  

6.3. Коэффициенты полезного действия механизмов.

   6.3.1. Коэффициент полезного действия - отношение полезной мощности на выходе Nn к мощности движущего усилия на входе Nд : eta =  Nn/Nд . Характеризует совершенство M и потери в нем, которые происходят за счет сил трения Nт = Nд - Nn :

eta = 1 - Nт/Nд . (6.8)

 Мощности потерь в кинематических парах: поступательной Nт = Fт*vs, вращательной Nт = Tт*omegas ; vs и omegas - относительные скорости звеньев.

 Сложный M можно представить как соединение более простых и КПД определять по КПД простых M, входящих в сложный.

   6.3.2. КПД при последовательном соединении простых M (рис. 6.10, а) :

eta1m = Nnm/Nд = eta1*eta2...etam . (6.9)

   В такой цепи общий КПД меньше минимального частного КПД.

   6.3.3. КПД при параллельном соединении простых M (рис.6.10, б) :

eta1m = Nnsum/Nд = k1*eta1 + k2*eta2 + ... + km*etam, (6.10)

   где k1, k2, ... km -коэффициенты, показывающие, какая часть общей мощности подведена к каждому простому M ; k1 + k2 + ... + km = 1.

 В такой цепи общий КПД определяется в основном частным КПД M, через  который проходит наибольшая мощность.

   6.3.4. КПД при параллельно-последовательном соединении M (рис. 6.10, в) :

eta = k1*eta1m*eta2m...+ k2*eta1n*eta2n...etann +...

...+ kp*eta1p*eta2p...etapp, (6.11)

   где коэффициенты ki учитывают распределение мощности по цепям;

   etaij - частные КПД простых M .

6.4. Определение закона движения механизма.

   6.4.1. Динамика - раздел динамического анализа, посвященный  определению законов движения звеньев M. Закон движения - зависимость  кинематических параметров от времени:

s = s (tau) ; v = v (tau) ; w = w (tau) ;

fi = fi (tau) ; omega = omega (tau) ; eps=eps (tau) ; (6.12)

   где s, v, w - линейные, fi, omega, eps - угловые параметры движения.

   Сущность метода определение законов движения звеньев и всего M сводится к интегрированию дифференциальных уравнений

F = m* (d2s/dtau2) или T = J* (d2fi/dtau2), являющихся выражением второго закона механики (закона Ньютона) .

   Особенность определения законов движения звеньев:

   а) многочисленность звеньев в сложных M, поэтому для каждого звена могут быть свои законы движения;

   б/ связанность звеньев и следовательно, их движений.

   6.4.2. Определение закона движения звена приведения. Чтобы оперировать минимальным числом параметров, в механизме выделяют звено приведения - какое-либо из звеньев, характер движения которого простейший: движение это прямолинейное или вращательное. Влияние массовых характеристик остальных звеньев и действующих на них усилий учитывают с помощью приведенных параметров, значения которых определяют из условий энергетической эквивалентности звена приведения и всего М. Это значит, что энергия и характер ее изменения для звена приведения и для всего M в каждый момент времени одинаковы.

   6.4.3. Приведенные массовые характеристики. При поступательном движении звена приведения со скоростью (v) пр приведенную массу (m) пр находят из условия равенства кинематических энергий звена и всего M, в  котором массы mi совершают поступательные движения со скоростями vi, а моменты инерции Jk - вращательные со скоростями omegak :

    (m)пр = sum{ mi*[vi/ (v)пр]**2 } + sum{ Jk*[omegak/ (v)пр]**2 }. (6.13)

   Соотношения vi/ (v)пр и omegak/ (v)пр представляют собой функции скорости для звеньев M, определенные по отношению к звену приведения,  поэтому приведенная масса - переменная величина, определяемая функцией положения M - формой и размерами звеньев и их взаимными положениями.

Если звено приведения вращается со скоростью (omega) пр, оно должно обладать приведенным моментом инерции

    (J)пр = sum{ mi*[vi/ (omega) пр]**2 } +

+ sum{ Jk*[omegak/ (omega) пр]**2 }, (6.14)

 который также определяется функцией положения.

   6.4.4. Приведенные силовые характеристики. Это - приведенная сила и приведенный момент, определяемый из условий равенства мощностей на звене приведения и во всем M . Приведенная сила

    (F)пр = sum{ Fi*[vi/ (v)пр]**2 } + sum{ Tk*[omegak/ (v)пр]**2 }; (6.15)

   приведенный момент

    (T)пр = sum{ Fi*[vi/ (omega) пр]**2 } +

+ sum{ Tk*[omegak/ (omega) пр]**2 }; (6.16)

   6.4.5. Уравнение движения звена приведения. Может быть получено из условия эквивалентности изменения энергии и работы на некотором элементарном перемещении (обычно учитывают только кинетическую энергию E подвижных звеньев) :

dA = dE = T*dfi ; dA = dE = F*ds,

   где dA - элементарная работа на элементарном перемещении dfi или ds,

   T - момент движущих сил, F - движущая сила.

   Для звена приведения (при вращательном движении) :

d[ (E)пр]/d (fi) пр = (T) пр = d[ (J)пр* (omega) пр**2/2]/d (fi) пр .

   Приведенный момент инерции (J) пр зависит от (fi) пр, поэтому

   d[ (E)пр]/d (fi) пр = 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } +

+ (J) пр* (omega) пр*d (omega) пр/d (fi) пр =

   = 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } +

+ (J) пр*[d (omega) пр/dtau] .

   Момент приведенной силы (T) пр представляют как сумму движущего момента (T) д и момента сил сопротивления (T) с :

    (J)пр*[d2 (fi) пр/dtau2] + 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } =

= [ (T)д + (T) с]пр . (6.17)

   Это - уравнение движения M в форме моментов - для вращательного движения приведенного звена. Соответствующее выражение для поступательного движения - уравнение движения в форме сил:

    (m)пр*[d2 (s)пр/dtau2] + 0.5*{ d (m)пр/d (s)пр) * (v)пр**2 } =

= [ (F)д + (F) с]пр . (6.18)

   Уравнения (6.17) и (6.18) могут быть проинтегрированы, если известны конкретные выражения для массовых и силовых приведенных характеристик.

   6.4.6. Законы движения остальных звеньев. Могут быть определены, если уравнения движения решены и для звена приведения получены зависимости типа (6.12) ; с помощью кинематических характеристик - функций положения, скорости и ускорения для М осуществляют переход к кинематическим параметрам, и, следовательно, к законам движения всех звеньев.

6.5. Колебательные процессы в М .

   6.5.1. Периодические силы возникают в М как результат вращательного движения звеньев вокруг осей, не проходящих через центр масс. В  подобных случаях инерционную силу (F) и = m*r*omega**2 ( рис. 6.11 ) можно представить в виде суммы двух составляющих Fx = (F) и*sin (fi) и Fz =(F) и*cos (fi), и если omega = d (fi) /dtau, то Fx и Fz будут периодическими силами . Воздействия таких сил приводят к возникновению в механических системах колебательных (вибрационных) процессов.

   6.5.2. Параметры колебательных процессов процессов получают, рассматривая движение физического тела относительно осей выбранной неподвижной системы координат. Тело массой m связано упругими связями с основанием, которое может быть неподвижно, и в этом случае колебательное движение вызывается непосредственным воздействием периодической силы на тело (силовое возбуждение), или само основание может периодически смещаться и передавать силовое воздействие на тело через упругую связь (кинематическое возбуждение) . Расчетные схемы приведены на рис. 6.12, а уравнение движения тела, в соответствии с (6.18) :

m*x" = F (tau) - Fс, (6.19)

   где F (tau) - внешняя периодическая сила, Fc - сила сопротивления,

x" - линейное ускорение при движенни вдоль оси x .

   6.5.3. Движение при однократном первоначальном импульсе силы F и силе упругого сопротивления, пропорциональной смещению: Fc = k*x:

уравнение движения: m*x" + kx = 0, а его решение:

x = a0*cos (omega0*tau + fi0), (6.20)

   где omega0 = (k/m) **0.5 - частота собственных колебаний массы m, установленной на упругой связи с коэффициентом жесткости k;

a0 - амплитуда смещения от положения равновесия, fi0 - началь ный фазовый угол колебаний.

   Таким образом, тело совершает гармонические колебания с периодом T0 = 2*pi/omega0.

   6.5.4. Затухающие колебания при сухом трении, сила сопротивления которого в первом приближении может считаться постоянной: Fт = const.

 В этом случае Fc = k*x + Fт, и решение уравнения (6.19)

x = a0 + (a0 - aт) *cos (omega0*tau), (6.21)

   где aт = Fт/ (m*omega0**2) - так называемая мертвая зона, в преде лах которой колебания невозможны.

   График колебательного процесса показан на рис. 6.13, колебания линейно затухают, так что разность двух соседних амплитуд a (i)-a (i+1) =  2*aт.

   6.5.5. Затухающие колебания при вязком трении, сила сопротивления которого пропорциональна скорости смещения x' (в густой вязкой жидкости) : Fc = b*x' + kx . Решение уравнения (6.19) - амплитуда экспоненциально затухающих собственных колебаний

x = a*exp (-del*tau) *cos (omega1*tau + fi1), (6.22)

   где del = 0.5*b/m - коэффициент затухания; omega1 = (omega0**2 - del**2) - частота собственных колебаний при вязком сопротив лении среды.

   Затухающие колебания происходят с периодом T1 = 2*pi/omega1, и характеризуются логарифмическим декрементом затухания Lam = ln[a (i)/a (i+1) ] = del*T1 .

   6.5.6. Силовое возбуждение действием силы F (tau) = F0*sin (omega* tau) при вязком сопротивлении. Уравнение колебаний :

m*x" + b*x' + k*x = F0*sin (omega*tau)

 имеет решение, представляющее амплитуду колебаний как сумму двух составляющих - собственных затухающих колебаний (x) с, определяемых формулой (6.22), и вынужденных от действия внешней периодической силы F (tau) с частотой этой силы omega :

 (x)в = (x) д*cos (omega*tau + fi), (6.23)

   где (x) д - динамическая амплитуда вынужденных колебаний, отличающая ся от статической (x) ст = F0/k, определяемой амплитудным значе нием F0 внешней возбуждающей силы.

   Соотношение (x) д/ (x)ст = kappa - коэффициент динамического усиления, определяется коэффициентом расстройки nju = omega/omega0 (соотношением частот внешней возбуждающей силы и собственных колебаний) и коэффициентом демпфирования (рассеяния энергии) в системе D = del/omega0:

kappa = 1 /[ (1- nju**2) **2 + 4* (D*nju) **2]**0.5 . (6.24)

   Фазовый угол fi = arc tg[2*D*nju/ (1- nju**2) ] .

   Таким образом, чем ближе частота внешней силы к частоте собственных колебаний и чем меньше коэффициент демпфирования, тем сильнее растет амплитуда колебаний; наибольшее увеличение амплитуды будет в резонансной зоне, т.е. когда коэффициент расстройки близок к единице. Характер колебательного процесса представлен на рис. 6.15.

   Амплитуда вынужденных колебаний (x) д = kappa* (x)ст .

   6.5.7. Кинематическое возбуждение смещением основания (x) a =a*sin (omega*tau) при вязком сопротивлении. Уравнение колебаний можно представить в виде

m*x" + b*[x'- (x) a]+ k*[x - (x) a] = 0,

 и тогда оно имеет решение, соответствующее (6.23), но (x) д = eta* (x)a, где eta - коэффициент передачи :

   eta = {[1 + 4* (D*nju) **2]**0.5}/[ (1- nju**2) **2 +

+ 4* (D*nju) **2]**0.5 . (6.25)

   Характер колебательного процесса представлен на рис. 6.16. При nju > (2) **0.5 амплитуда вынужденных колебаний меньше, чем амплитуда возбуждающих, т.е. это - область виброзащиты.

РАЗДЕЛ 2. ОСНОВЫ РАСЧЕТОВ НА ПРОЧНОСТЬ

   Задачи раздела - определение:

   а) прочности деталей под воздействием приложенных нагрузок;

   б) жесткости элементов конструкции;

   в) устойчивости деталей, для которых ее потеря является опасной для работоспособности М.

   Прочность детали - способность без разрушения выдерживать приложенную нагрузку. Жесткость - соотношение усилия и вызываемой им деформации детали. Потеря устойчивости - катастрофическое нарастание деформации под воздействием относительно малых усилий.

Глава 7. Краткие сведения о свойствах материалов для конструкций РЭС.

7.1. Сплавы железа и углерода - стали.

   7.1.1. Стали - сплавы железа, в которых углерода менее 2 %.

 Прочность и твердость стали возрастают с увеличением содержания углерода, пластичность уменьшается. Первая цифра в обозначении стали показывает содержание углерода; литеры в начале: У - сталь, в которой углерода более 0.7 %, А- сталь для обработки на станках- автоматах, Л- литейная сталь.

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.