![]() |
|
|
Реферат: Научно-технический прогресс газотурбинных установок магистральных газопроводов1.2 Германия Пионерами развития турбореактивного авиадвигателестроения в Западной Европе были Фрэнк Уиттл (1907-1996) в Англии и Ганс фон Охайн (1911-1998) в Германии. Ф. Уиттл приблизительно на пять лет раньше Г. фон Охайна начал оформление концептуальной идеи ТРД (рис. 1.24) и ее патентование. Однако испытания первых двигателей-демонстраторов HeS 1 и W.U.-1 начались приблизительно в одно и то же время — в марте и апреле 1937 г. Общим для обоих энтузиастов, создававших первые в мире работающие ТРД, было то, что первые расчеты и проекты они сделали еще в студенческие годы Ф. Уиттл в возрасте 22 лет на четвертом курсе колледжа Королевских ВВС в Корнуэлле, а затем на курсах инструкторов летной школы в Уиттеринге (1928 - 1929), а Г. фон Охайн также в возрасте 22 лет, при окончании Геттингенского университета (1933—1934). Г. фон Охайна с 3 апреля 1936 г. работал по контракту с Э. Хейнкелем. И первый полет только на реактивной тяге был совершен на самолете Не-178 с двигателем его конструкции 27 августа 1939 г. — двигатель HeS3B с тягой 450 кгс (рис. 7). Несмотря на это Г. фон Охайну так и не удалось создать массовый серийный ТРД. Рис. 8. Конструктивная схема ТРД Юмо-004 Наибольших успехов при создании первого массового серийного реактивного двигателя Юмо-004 (рис. 8) добился другой немецкий конструктор австрийского происхождения Анслем Франц (1900 - 1994). Он получил образование в Техническом университете г. Граца, а затем в докторантуре Берлинского университета. В 1936 г. А. Франц поступил в фирму "Юнкере" (г. Дессау). Он возглавлял отдел нагнетателей, когда в 1939 г. его назначили руководителем проекта ТРД Юмо-004. В отличие от проектов Ф. Уиттла и Г. фон Охайна, основанных на применении центробежных компрессоров, для двигателя Юмо-004 была выбрана осевая схема компрессора, имеющая выигрыш по лобовой производительности и КПД. Аэродинамика
восьмиступенчатого компрессора на расход воздуха 21,2 кг/с и Первый запуск Юмо-004А состоялся весной 1940 г., а в январе 1941 г. двигатель был выведен на полные обороты n = 9000 об/мин с тягой 430 кгс. Тяга 1000 кгс была получена лишь в декабре 1941 г. Летные испытания опытного Юмо-004А начались 15 марта 1942 г. на летающей лаборатории Me-100. Первый полет (только на реактивной тяге) состоялся 18 июля 1942 г. на самолете Ме-262 с двумя двигателями Юмо-004А. При доводке Юмо-004 были преодолены две большие проблемы: - в первой половине 1941 г. повышенные вибрации и поломки лопаток СА компрессора; - во второй половине 1943 г. повышенные вибрации и поломки рабочих лопаток турбины. Первая проблема была вызвана консольной конструкцией лопаток СА компрессора, изготовленных из листа, а вторая резонансным возбуждением рабочих лопаток турбины шестью жаровыми трубами и тремя толстыми стойками за турбиной. Каждая проблема решалась в течение полугода с помощью известного специалиста по вибрациям лопаток доктора Макса Бентеле. Массовая поставка серийного варианта Юмо-004В с тягой 900 кгс началась в марте 1944 г. Всего в Германии их было изготовлено 6424 шт. Двигатели устанавливались на истребителях Ме-262 (1400 шт.), бомбардировщиках Ю-287 и Арадо 234В (рис. 9). После войны двигатель получил дальнейшее развитие (Юмо-012) с участием немецких и советских специалистов в Восточной Германии и в ОКБ завода № 2 г. Куйбышева (г. Самара) (рис. 10). Рис. 9. Самолеты Ме-262А с двигателями Юмо-004 и Arado-234 с двигателями BMW-003 или Юмо-004 Одновременно в Германии на фирмах BMW и Bramo (г. Шпандау) создавался другой ТРД - BMW-003 (рис. 11). Он был близок по конструкции Юмо-004, но имел кольцевую камеру сгорания и несколько меньшую тягу – 800 кгс. Руководил разработкой Герман Ойстрих. BMW-003 был выпущен значительно меньшей серией, чем Юмо-004 и устанавливался на самолётах Не-162 и Arado-234. Герман Ойстрих впоследствии работал во французской фирме Snecma и вместе со 120 специалистами фирмы BMW создал там ТРД Atar-101. В 1949 г. первый двигатель BMW был запущен, но он выдал тягу всего 260 кгс. Тягу 460 кгс BMW-003 показал на испытаниях на самолете Ме-262 только в ноябре 1941 г. Ме-262 имел, кроме этого, носовой поршневой двигатель. Испытания были неудачными. Уже при взлете были поломаны лопатки компрессора. Это привело к тому, что в дальнейшем предпочтение было отдано двигателю Юмо-004. Первый серийный BMW-003А-0 был испытан полете в октябре 1943 г. Всего в Германии было построено около 700 шт. различных модификаций BMW-003. В 1940 г. фирма BMW начала проектировать также ТВД BMW-109-028 мощностью 7900 л.с. (рис. 12). Опыт проектирования этого двигателя был использован после войны в г. Куйбышеве (г. Самара) в ОКБ завода № 2. 1.3 Англия Начатую Ф. Уиттлом в
инициативном порядке программу создания и развития английских ТРД можно считать
(как и немецкую программу Юмо-004) весьма успешной. Уиттл принял удачную
концептуальную идею разработки ТРД – центробежный компрессор с От первого запуска экспериментального ТРД Ф. Уиттла W.U. (Whittle Unit), состоявшегося 12 апреля 1937 г., до первого полета однодвигательного реактивного самолета "Глостер" Е28/39 с ТРД W.1 15 мая 1941 г. прошло четыре года. За это время решалось много проблем. Но главной была проблема создания надежной камеры сгорания, которая претерпела ряд изменений — от кольцевой до трубчатой противоточной, а затем и до трубчатой прямоточной. После разрушения турбины на W.U.-3 в феврале 1941 г. был внедрен новый никелевый сплав фирмы "Монд Никель", названный Нимоник 80. Рис. 10. Конструктивные схемы дальнейшего развития двигателя Юмо (Юмо-012Б) Рис. 11. Конструктивная схема ТРД BMW-003 Рис. 12. Конструктивные схемы дальнейшего развития двигателя BMW Объединенными усилиями трех фирм - "Пауэр Джетс", "Ровер" и "Роллс-Ройс" - был создан опытный двигатель W.2B, ставший прототипом двигателей "Велланд", а затем "Дервент" и "Нин" (уже с прямоточными трубчатыми камерами сгорания). 5 марта 1943 г. двухдвигательный истребитель Глостер ("Метеор-1") с двумя двига телями W.2B ("Велланд 1") тягой по 770 кгс совершил первый полет. А в июле 1944 г. он поступил в широкую эксплуатацию. Всего в Европе в период с 1943 по 1954 гг. было построено 3875 "Метеоров" различных модификаций. Первым британским двигателем с осевым компрессором был "Метрополитен-Викерс F2" (рис. 13), созданный А. Гриффитом и Х. Константом и впервые испытанный на стенде в 1940 г. В ноябре 1943 г. два таких двигателя тягой по 975 кгс были установлены на "Метеор F2/40" и совершили первый полет. "Роллс-Ройс" продолжила разработку ТРД с центробежным компрессором, включая "Дервент" (1943 г.), "Нин" (1944 г.) и "Дарт" (1947 г.), а в 1950-е гг. перешла на ТРД с осевыми компрессорами (типа "Эйвон") и ТРДД ("Конуэй", "Спей" и т.д.) Сравнение основных данных первых опытных и серийных ТРД СССР, Англии и Германии дано в табл. 1. Сравнительная хронология ряда важнейших событий при создании первых газотурбинных и турбореактивных двигателей в СССР, Англии и Германии дана в табл. 2. Рис. 13. Конструктивная схема ТРД "Метрополитен-Викерс F2" Таблица 1 Основные данные первых опытных и серийных ТРД Таблица 2 Хронология создания первых турбореактивных двигателей Таблица 3 Поколения авиационных ГТД 2. ГТД наземного и морского применения Параллельно с развитием авиационных ГТД началось применение ГТД в промышленности и на транспорте. В 1939 г. швейцарская фирма A.G. Brown Bonety ввела в эксплуатацию первую электростанцию с газотурбинным приводом мощностью 4 МВт и КПД 17,4 %. Эта электростанция и в настоящее время находится в работоспособном состоянии. В 1941 г. вступил в строй первый железнодорожный газотурбовоз, оборудованный ГТД мощностью 1620 кВт (2200 л.с.) разработки этой же фирмы. С конца 1940-х гг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. - в составе газоперекачивающих агрегатов (ГПА) на магистральных газопроводах для привода нагнетателей природного газа. Таким образом, постоянно расширяя область и масштабы своего применения, ГТД развиваются в направлении повышения единичной мощности, экономичности, надежности, автоматизации эксплуатации, улучшения экологических характеристик. Быстрому внедрению ГТД в различные отрасли промышленности и транспорта способствовали неоспоримые преимущества этого класса тепловых двигателей перед другими энергетическими установками - паротурбинными, дизельными и др. К таким преимуществам относятся: - большая мощность в одном агрегате; - компактность, малая масса (рис. 14); - уравновешенность движущихся элементов; - широкий диапазон применяемых топлив; - легкий и быстрый запуск, в том числе при низких температурах; - хорошие тяговые характеристики; - высокая приемистость и хорошая управляемость. Основным недостатком первых моделей наземных и морских ГТД была относительно низкая экономичность. Однако эта проблема достаточно быстро преодолевалась в процессе постоянного совершенствования двигателей, чему способствовало опережающее развитие технологически близких авиационных ГТД и перенос передовых технологий в наземные двигатели. 2.1 Механический привод промышленного оборудования Наиболее массовое применение ГТД механического привода находят в газовой промышленности. Они используются для привода нагнетателей природного газа в составе ГПА на компрессорных станциях магистральных газопроводов, а также для привода агрегатов закачки природного газа в подземные хранилища (рис. 15). Рис. 15. Применение ГТД для прямого привода нагнетателя природного газа: 1 - ГТД; 2 - трансмиссия; 3 - нагнетатель. К примеру, только в ОАО "Газпром" к настоящему времени эксплуатируются около 3100 ГТД суммарной установленной мощностью свыше 36000 МВт. ГТД используются также для привода насосов, технологических компрессоров, воздуходувок на предприятиях нефтяной, нефтеперерабатыватывающей, химической и металлургической промышленности. Мощностной диапазон ГТД от 0,5 до 50 МВт. Основная потребность перечисленного приводимого оборудования – зависимость потребляемой мощности от частоты вращения (обычно близкая к кубической), температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменными частотами вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной. Различные схемы морских и наземных ГТД будут рассмотрены ниже. 2.2 Привод электрогенераторов ГТД для привода электрогенераторов (рис. 16) используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих "чистую" электроэнергию, а также в составе когенерационных установок (в российской литературе они часто называются "ГТУ-ТЭЦ"), производящих совместно электрическую и тепловую энергию. Современные ГТЭС простого цикла, имеющие относительно умеренный электрический КПД ηэл= 25…40%, в основном используются в пиковом режиме эксплуатации – для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуется высокой цикличностью (большим количеством циклов "пуск – нагружение – работа под нагрузкой – останов"). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме. Электростанции с ПГУ используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов "пуск – останов" для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на ГТД большой мощности (N > 150 МВт), достигают КПД выработки электроэнергии ηэл= 58…60%. В когенерационных установках тепло выхлопных газов ГТД используется в котле-утилизаторе для производства горячей воды и (или) пара для технологических нужд или в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90%. Электростанции с ПГУ и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт. Основная особенность ГТД для привода электрогенераторов – постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального), а также и высокие требования к точности поддержания частоты вращения, от которого зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике. Рис. 16. Применение ГТД для привода генератора (через редуктор): 1- ГТД, 2 – трансмиссия, 3 – редуктор, 4 – генератор. ГТД большой мощности (N > 60 МВт), работающие, как правило, в базовом режиме в составе мощных электростанций, выполняются исключительно по одновальной схеме. В энергетике используется весь мощностной ряд ГТД от нескольких десятков кВт до 350 МВт. 2.3 Применение в морских условиях В морских условиях ГТД применяются в составе силовых агрегатов гражданских морских судов и боевых кораблей различного класса: от быстроходных ракетных и патрульных катеров водоизмещением около 500 т до авианосцев и кораблей сопровождения водоизмещением до 50000 т. Газотурбинный силовой агрегат обычно включает один или несколько ГТД и редуктор для понижения частоты вращения и передачи мощности на гребной винт. При этом ГТД могут быть различной мощности. В этом случае двигатель меньшей мощности используется как маршевый для экономичного крейсерского хода, а большей мощности – как форсажный для обеспечения максимального боевого хода при совместной работе с маршевым двигателем. Применяются также силовые агрегаты смешанного типа с использованием дизеля в качестве маршевого двигателя. К ГТД морского применения могут быть отнесены также двигатели, предназначенные для привода промышленного и энергетического оборудования, но работающие в морских условиях – на морских платформах добычи нефти и газа или в прибрежной полосе. Такие ГТД должны удовлетворять ряду специфических требований, поскольку работают они в агрессивной морской среде. Класс мощности морских ГТД – от 0,5 до 50 МВт. Кроме перечисленных выше основных объектов ГТД применяются также как двигатели наземных транспортных средств (локомотивов, автомобилей) и боевой техники (танков, бронемашин). Прорабатывается применение ГТД для городских трамваев. Дополнительным эффектом использования ГТД может быть выработка сжатого воздуха, инертных газов, охлаждённого воздуха (в системах кондиционирования и промышленных холодильниках). 3. Основные типы наземных и морских ГТД Наземные и морские ГТД различного назначения и класса мощности можно разделить на три основных технологических типа: - стационарные ГТД; - ГТД, конвертированные из авиадвигателей (авиапроизводные); - микротурбины. 3.1 Стационарные ГТД Двигатели этого типа разрабатываются и производятся на предприятиях энергомашиностроительного комплекса согласно требованиям, предъявляемым к энергетическому оборудованию: - высокий ресурс (не менее 100000 ч) и срок службы (не менее 25 лет); - высокая надёжность; - ремонтопригодность в условиях эксплуатации; - умеренная стоимость применяемых конструкционных материалов и ГСМ для снижения стоимости производства и эксплуатации; - отсутствие жёстких габаритно-массовых ограничений, существенных для авиационных ГТД. Перечисленные требования сформировали облик стационарных ГТД, для которых характерны следующие особенности: - максимально простая конструкция; - использование недорогих материалов с относительно низкими характеристиками; - массивные корпуса, как правило, с горизонтальным разъёмом для возможности выемки и ремонта ротора ГТД в условиях эксплуатации; - конструкция камеры сгорания, обеспечивающая возможность ремонта и замены жаровых труб в условиях эксплуатации; - использование подшипников скольжения. Рис. 17. Стационарный ГТД (модель M501F фирмы Mitsubishi Н. I.) мощностью 150 МВт Типичный стационарный ГТД показан на рис. 17. В настоящее время ГТД стационарного типа используются во всех областях применения наземных и морских ГТД в широком диапазоне мощности от 1 МВт до 350 МВт. На начальных этапах развития в стационарных ГТД применялись умеренные параметры цикла. Это объяснялось некоторым технологическим отставанием от авиационных двигателей из-за отсутствия мощной государственной финансовой поддержки, которой пользовалась авиадвигателестроительная отрасль во всех странах-производителях авиадвигателей. С конца 1980-х гг. началось широкое внедрение авиационных технологий при проектировании новых моделей ГТД и модернизации действующих. К настоящему времени мощные стационарные ГТД по уровню термодинамического и технологического совершенства вплотную приблизились к авиационным двигателям при сохранении высокого ресурса и срока службы. 3.2 Наземные и морские ГТД, конвертированные из авиадвигателей ГТД данного типа разрабатываются на базе авиационных прототипов на предприятиях авиадвигателестроительного комплекса с использованием авиационных технологий. Промышленные ГТД, конвертированные из авиадвигателей, начали разрабатываться вначале 1960-х гг., когда ресурс гражданских авиационных ГТД достиг приемлемой величины (2500...4000 ч.). Первые промышленные установки с авиаприводом появились в энергетике в качестве пиковых или резервных агрегатов. Дальнейшему быстрому внедрению авиапроизводных ГТД в промышленность и транспорт способствовали: - более быстрый прогресс в авиадвигателестроении по параметрам цикла и повышению надежности, чем в стационарном газотурбостроении; - высокое качество изготовления авиационных ГТД и возможность организации их централизованного ремонта; - возможность использования авиадвигателей, отработавших летный ресурс, с необходимым ремонтом для эксплуатации на земле; - преимущества авиационных ГТД – малая масса и габариты, более быстрый пуск и приемистость, меньшая потребная мощность пусковых устройств, меньшие потребные капитальные затраты при строительстве объектов применения. При конвертации базового авиационного двигателя в наземный или морской ГТД в случае необходимости заменяются материалы некоторых деталей холодной и горячей частей, наиболее подверженных коррозии. Так, например, магниевые сплавы заменяются на алюминиевые или стальные, в горячей части применяются более жаростойкие сплавы с повышенным содержанием хрома. Камера сгорания и система топливопитания модифицируются для работы на газообразном топливе или под многотопливный вариант. Дорабатываются узлы, системы двигателя (запуска, автоматического управления (САУ), противопожарная, маслосистема и др.) и обвязка для обеспечения работы в наземных и морских условиях. При необходимости усиливаются некоторые статорные и роторные детали. Объем конструктивных доработок базового авиадвигателя в наземную модификацию в значительной степени определяется типом авиационного ГТД. Например, при использовании ТРД - обязательна разработка свободной силовой турбины (СТ) или подстановка дополнительных ступеней к существующей турбине. При использовании ТРДД, имеющих, как минимум, по два каскада компрессора и турбины, возможна конвертация в наземные и морские ГТД различных схем: с однокаскадным газогенератором и свободной СТ; с двухкаскадным двухвальным газогенератором и свободной СТ; со "связанным" КНД. В первом и последнем вариантах возможно использование турбины вентилятора базового авиадвигателя в качестве силовой. Пример конвертированного ГТД показан на рис. 18, а сравнение конвертированного ГТД и ГТД стационарного типа одного класса мощности показано на рис. 19. Авиационные ТВД и вертолетные ГТД функционально и конструктивно более других авиадвигателей приспособлены для работы в качестве наземных ГТД. Они фактически не требуют модификации турбокомпрессорной части (кроме камеры сгорания). Первым массовым конвертированным ГТД стал ТРД Avon фирмы Rolls-Royce, устанавливавшийся на самолетах "Каравелла". С 1964 г. "Avon" используется как газогенератор для стационарной СТ производства фирмы Cooper Bessemer. По аналогичной схеме впоследствии был конвертирован двухвальный газогенератор ТРДД RB211-24G. Мощность ГТУ, получивших обозначение Coberra 2000 и Coberra 6000, составила 14,5 и 27 МВт соответственно. Рис. 18. ГТД, конвертированный из авиадвигателя (модель LM2500 фирмы General Electric мощностью 23 МВт на базе ТРДД CF6-6) Рис. 19. Сравнение типичных конструкций ГТД, конвертированного из авиадвигателя и ГТД стационарного типа одного класса мощности (25 МВт, фирма GE): 1 - тонкие корпуса; 2 - подшипники качения; 3 - выносные КС; 4 - массивные корпуса; 5 - подшипники скольжения; 6 - горизонтальный разъем. В СССР в 1970-е годы был разработан наземный ГТД НК-12СТ на базе одновального авиационного ТВД НК-12, который эксплуатировался на самолетах ТУ-95, ТУ-114 и АН-22. Конвертированный двигатель НК-12СТ мощностью 6,3 МВт был выполнен со свободной СТ и работает в составе многих ГПА и по сей день. В настоящее время конвертированные авиационные ГТД различных производителей широко используются в энергетике, промышленности, в морских условиях и на транспорте. Мощностной ряд – от нескольких сотен киловатт до 50 МВт. Данный тип ГТД
характеризуется наиболее высоким эффективным КПД при работе в простом цикле,
что обусловлено высокими параметрами и эффективностью узлов базовых
авиадвигателей. ГТД LM6000PC фирмы General Electric и TRENT фирмы Rolls-Royce
имеют эффективный КПД на валу СТ 4. Основные мировые производители ГТД В данном разделе дается краткий обзор крупнейших зарубежных и российских разработчиков, производителей авиационных, наземных и морских ГТД. Указываются марки наиболее массовых моделей ГТД и перспективные проекты. |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |