рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Реферат: Оборудование и основы технологии проектирования электросталеплавильных цехов

Установки ЭЛУ по сравнению с ВДП обладают значительно большими возможностями по дегазации металла и удалению из него неметаллических включений. Объясняется это тем, что в ЭЛУ ванна жидкого металла в верхней части слитка может выдерживаться в вакууме более длительное время, а перегрев металла легко осуществляется в любых целесообразных пределах. Электронный луч позволяет создавать высокую плотность мощности на поверхности 'металла (Ю2-109 Вт/см2), которая легко и плавно может регулироваться. В ЭЛУ можно управлять процессом кристаллизации слитка за счет изменения скорости плавки, подводимой мощности и развертки луча на поверхности жидкого металла. В ЭЛУ источник энергии вынесен из' пространства, где осуществляется технологический процесс, и его мощность в отличие от ВДП и ЭШП можно регулировать независимо от того, что происходит в рабочей камере". Это обеспечивает значительно большую гибкость в управлении процессом переплава металла, чем при ВДП и ЭШП.

Вместе с тем следует отметить, что широкое применение ЭЛУ в электросталеплавильном производстве сдерживается рядом факторов, к числу которых относятся: низкие производительность и КПД, сложность изготовления и высокая стоимость высоковольтных источников питания постоянного тока, сложность изготовления отдельных узлов, необходимость применения сложного и мощного вакуумного оборудования и использования высококвалифицированного обслуживающего персонала. Так, при одинаковой мощности 150-200 кВт массовая скорость плавки в ВДП составляет 5—10 кг/мин, а в ЭЛУ - 0,4-0,5 кг/мин, т.е. в 10-20 раз меньше, общий КПД электронно-лучевой плавки составляет только ~ 10 %.

Для плавильных установок электронно-лучевого нагрева наибольшее распространение получили агрегаты с аксиальными пушками, единичная мощность которых доходит до 7500 кВт (рис. 50). ЭЛУ с аксиальными пушками характеризуются наличием сильно сфокусированного конусообразного электронного луча, 'формируемого в пространстве, отделенном от плавильной камеры установки. У мощных аксиальных пушек промышленных плавильных установок имеется массивный катод косвенного нагрева, который разогревается до рабочей температуры посредством бомбардировки его электронами от вспомогательного катода К1, выполненного в виде вольфрамовой спирали, нагреваемой за счет прохождения через нее тока от самостоятельного накального трансформатора. Основной катод К представляет собой вогнутую снизу вольфрамовую линзу диаметром 2,5-4,0 см, что обеспечивает формирование сходящегося электронного луча. Между вспомогательным и основным катодами приложено напряжение постоянного тока 3,5-5,0 кВ (основной катод в данном случае по отношению к вспомогательному катоду, играет роль анода). Основной анод/1 имеет специфическую форму, которая обеспечивает прохождение всего электронного пучка полностью через анодное отверстие. Ускоряющее напряжение 30-40 кВ прикладывается к основному катоду (минус) и основному аноду (плюс). Выйдя из основного анода, пучок электронов попадает в лучепровод Л, соединяющий катодную камеру пушки с плавильной камерой ЭЛУ. Длина электронного луча от основного катода до поверхности жидкого металла в кристаллизаторе на промышленных установках с аксиальными пушками достигает 1-2 м. Назначение лучепровода заключается в защите катодного узла пушки от попадания в него газов из плавильной камеры. С этой целью лучепровод имеет самостоятельную систему откачки. Таким образом, в ЭЛУ с аксиальными пушками имеются три автономные системы откачки: катодного узла, лучепровода, плавильной камеры. Благодаря этому в зоне формирования электронного луча поддерживается стабильное остаточное давление в пределах 5 • 10 2-5 • 10 3 Па, исключаются попадание паров металла и вероятность электрических пробоев, что в конечном счете обеспечивает надежную работу катода, стойкость которого составляет сотни часов. Проходя через лучепровод, электронный пучок расширяется, поэтому для его дополнительного сжатия проводят магнитную фокусировку с помощью магнитных линз М (соленоидов).

В плавильных ЭЛУ с аксиальными пушками, предназначенными для переплава, заготовки могут подаваться вертикально или горизонтально. Равномерное оплавление заготовок в ряде случаев обеспечивается их вращением. Кристаллизаторы применяются медные водоохлаждаемые. Для облегчения вытягивания слитка кристаллизатор в верхней части имеет цилиндрическую форму, а в нижней он расширяется в виде конуса. Механизм вытягивания слитка представляет собой водоохлаждаемый шток с закрепленной на нем затравкой. Шток проходит через вакуумное уплотнение под плавильную камеру, где он соединяется с приводом механизма вытягивания.

В плавильной камере размещаются переплавляемая заготовка, электронные пушки и кристаллизатор. Стенки камеры делаются двойными водоохлаждаемыми. В камеру вварены патрубки для ее соединения с вакуумной системой. Гляделки для визуального наблюдения за процессом переплава снабжены поворотным диском с промежуточными защитными стеклами, которые по мере запыления заменяют. Характеристика ЭЛУ, предназначенных для переплава стали и сплавов, приведена в табл.16. Установка ЕМО-1200, предназначенная для получения стального слитка массой до 18т, показана на рис. 4.

Электроннолучевая печь типа ЕМО-1200 с горизонтальной подачей заготовок

1 - электронная аксиальная пушка; 2 — слиток; кристаллизатор; 4 — подача заготовок; 5 — вакуумные насосы

4. Установки плазменно-дугового переплава в водоохлаждаемый кристаллизатор

Установки указанного типа предназначены для переплава заготовок металла, а также гранул и порошка в условиях нейтральной атмосферы - аргона с помощью низкотемпературной - плазмы. Плавка в инертной атмосфере равноценна раскислению и дегазации жидкого металла в вакууме, если парциальное давление азота, водорода, паров воды и оксида углерода в атмосфере печи достаточно мало. Наличие водоохлаждаемого кристаллизатора, в котором формируется слиток в процессе тгереплава заготовки (гранул, порошка), обеспечивает возможность получения плотной мелкозернистой структуры металла. Сохраняя достоинства установок вакуумно-дугового (ВДП) и электронно-лучевого переплава (ЭЛУ), установки плазменно-дугового переплава (ПДП) в кристаллизатор отличаются простотой конструкции, большей безопасностью в эксплуатации. Плазяатроны этих установок выполняются только с металлическими катодами из вольфрама. Схемы плазменных яечей для переплава в кристаллизатор с вертикальным и радиальным размещением плазматронов показаны на рис. 5.

Рис. 5.Схемы плаз-менно-дуговых печей с вертикальным (а) и радиальным (б) размещением плазма-тронов

1 — источник питания; 2 — рабочая камера; 3 — плазма-трон; 4 — переплавляемая заготовка; 5 — кристаллизатор; 6 — слиток

Особенностью указанных печей является их оборудование системой рециркуляции, плазмообразующего газа производительностью до 50 м3/ч и вакуумной системой для удадения воздуха из плавильной камеры. Установки ИЭС им. Е.О.Патона нашли применение для переплава жаропрочных и прецизионных сплавов, а также подшипниковых, конструкционных и коррозионностойких сталей с вытягиванием слитка по мере его наплавления из кристаллизатора. Ниже приведена техническая характеристика плазменных печей для переплава в кристаллизатор:

Установка .... У-461 У-468 У-550 У-600
Мощность плазматронов, кВт 160 240 2000 1800
Напряжение питания плазматронов, В 40-80 40-80 До 200 До 200
Число плазматронов, шт 4 6 6 6
Максимальный диаметр слитка, мм 100 150 630 650
Максимальная масса слитка, кг 30 130 3500 5000
Скорость вытягивания слитка, мм/мин 0,5-30,0 1,0-10,0 1,5-15,0 2,0-20,0
Высота установки, м 3,52 5,26 10,0 19,35

Площадь плавильной камеры с рабочей

площадкой, м2

10,5 10,5 48,0 48,0

К основным достоинствам плазменной печи для плавки в кристаллизатор относятся: возможность выплавки слитков различного профиля при дозированной подаче флюса в центр металлической ванны; наличие перемешивания жидкой ванны за счет воздействия на него потоков плазмообразующего газа; наличие защитной атмосферы нейтрального газа.


Рис. 6. Схема (а) и общий вид (tf) многоплазматронной переплавной плазменно-дуговой печи типа У-600

1 — расходуемая заготовка; 2 — рабочая камера; 3 — плазматроны; 4 — слиток; 5 - кристаллизатор; 6 -механизм вытягивания слитка; 7 — механизм подачи и вращения заготовки

5. Вакуумные индукционные печи

Вакуумные индукционные печи (ВИП) предназначены для плавки и рафинирования высоколегированных сталей, жаропрочных и прецизионных сплавов с низким содержанием углерода с таким расчетом, чтобы во время плавки поддерживалось остаточное давление 10-1—10-2 Па. ВИП работают на отходах собственного металлургического производства и чистых металлических материалах. Крупные ВИП иногда вместо твердой завалки используют жидкий полупродукт, выплавленный в других агрегатах (обычно ДСП). По сравнению с другими плавильными установками специальной электрометаллургии ВИП имеет следующие преимущества:

1) жидкий металл можно длительное время выдерживать в вакууме. Это обеспечивает глубокую дегазацию, раскисление и очищение стали от неметаллических включений и примесей цветных металлов;

2) можно выплавлять любые сложные по химическому составу стали и сплавы, наличие электромагнитного перемешивания металла создает благоприятные условия для быстрого растворения легирующих добавок;

3) простота регулирования мощности и дозировки энергии обеспечивает быстрый перегрев металла до требуемого уровня с высокой точностью.

К недостаткам ВИП относятся: загрязнение металла материалом тигля, холодные шлаки, низкая стойкость тигля (20—50 плавок на промышленных печах).

Электрический КПД вакуумной индукционной печи при плавке сталей составляет η = 0,7÷0,8.

В индукционных тигельных печах, к которым относится ВИП, происходит естественная циркуляция расплавленного металла, обусловленная электродинамическими усилиями. Циркуляция металла возникает при взаимодействии вихревых токов, протекающих в жидком металле, с током индуктора.. Равнодействующая сила, направленная от индуктора на металл, приходится на среднюю часть тигля. Это приводит к возникновению в расплаве так называемой двухконтурной циркуляции, когда расплав в верхней части ванны выдавливается вверх, а в нижней — вниз, образуя самостоятельные контуры движения металла (рис. 55, а). В результате в центре тигля поверхность металла поднимается, образуя выпуклый мениск.

Интенсивное перемешивание металла играет- положительную роль, ускоряя процессы растворения легирующих добавок и выравнивая температуру в объеме ванны. Наличие мениска относится к нежелательным явлениям, так как шлак перемещается к стенкам тигля, способствуя ускоренному разъеданию его футеровки, а в центре металл оголяется, что приводит к увеличению потерь тепла и ухудшению условий протекания реакций между шлаком и металлом. Эффект перемешивания металла возрастает с понижением частоты и снижается при переходе к более высоким частотам.

Электрическое питание вакуумных индукционных печей осуществляется от машинных высокочастотных генераторов,. ти-ристорных преобразователей частоты и ламповых генераторов (применяются на лабораторных печах). КПД машинных генераторов составляет 70-85%, ламповых 50-70%, тиристорных преобразователей 90-95 %.

Особенности конструкции вакуумных индукционных плавильных печей

По Принципу работы вакуумные индукционные печи (ВИП) выполняются двух типов — периодического и полунепрерывного действия.

Печи периодического действия имеют одну вакуум-камеру, где после эвакуации воздуха производится плавка металла с последующей его разливкой в изложницу или форму. После разливки металла печь разгерметизируют для удаления изложницы со слитком, осмотра и ремонта тигля, загрузки шихты. При этом либо отводится в сторону или снимается крышка корпуса, либо отводится корпус вакуумной камеры. После извлечения слитка, чистки тигля и загрузки в тигель новой порции шихты в вакуум-камеру устанавливают порожнюю изложницу, печь закрывают, производят откачку воздуха и начинают очередную плавку.

Печи полунепрерывного действия имеют три вакуум-камеры: плавильную, загрузочную и разливочную. Иногда разливочная камера заменяется камерой изложницы. Тогда металл разливают в плавильной камере. Загрузочная и разливочная камеры (или камеры изложницы) отделены от плавильной камеры шлюзовыми затворами шиберного типа. Это позволяет проводить, в печи без разгерметизации не одну плавку, а серию плавок, количество которых определяется стойкостью футеровки тигля (одной кампании тигля).

В печах полунепрерывного действия благодаря наличию шлюзовых затворов одновременно с плавкой металла в вакууме в плавильной камере в загрузочной камере при атмосферном давлении устанавливается корзина с новой порцией шихты. В разливочной камере в это же время проводятся операции по извлечению изложниц с залитым в них металлом и установкой изложниц под разливку. Загрузочная и разливочная камеры отделены от внешней среды технологическими затворами шиберного типа. После проведения всех необходимых операций загрузочная и разливочная камеры герметизируются с помощью затворов и из них эвакуируется воздух. Печи полунепрерывного действия получили широкое распространение благодаря ряду преимуществ по сравнению с печами периодического действия - более высокой производительности из-за отсутствия откачки воздуха из плавильной камеры перед каждой плавкой, более высокой стойкости тигля вследствие уменьшения периодического охлаждения и нагрева при разгерметизации плавильной камеры, исключения времени на остывание изложниц или форм перед удалением их из плавильной камеры, уменьшения окисления металла и его загрязнения из-за напуска воздуха в плавильную камеру.

Современная индукционная вакуумная печь полунепрерывного действия вместимостью 2,5 т (ИСВ-2.5-НИ) конструкции ВНИИЭТО показана на рис. 7.


Схема вакуумной индукционной электропечи ИСВ-2.5НИ полунепрерывного действия вместимостью 2,5 т конструкции ВНИИЭТО

Печь состоит из плавильной камеры 1 с цилиндрической частью 8, внутри которой расположен индуктор с тиглем 2. Наклон печи осуществляется цепным механизмом 3. Загрузочная камера 7, внутри которой располагается саморазгружающаяся корзина 5, отделена от плавильной камеры вакуумным затвором 4. Корзина с шихтой 5 перемещается с помощью канатного механизма 6. Печь снабжена восьмисекционным дозатором 9 для загрузки в тигель по ходу плавки раскислителей и легирующих добавок. Для удобства обслуживания печи в верхней части корпуса снаружи установлена площадка 10. Зачистка тигля производится ломиком 11, расположенным на глухой крышке 12. Камера изложниц 13 прямоугольной формы соединена с плавильной камерой через вакуумной затвор. Рядом с камерой изложниц установлен специальный стенд, предназначенный 'для установки тележки с изложницами 14 перед их закатыванием в плавильную камеру и после выката их из печи. Печь снабжена самоходной тележкой 15 для отката крышки 16 плавильной камеры 1. Изложницы между плавильной камерой и камерой изложниц перемещаются на тележке с помощью механизма, приводимого в действие от электропривода. Вакуумная система снабжена форвакуумными и бустерными насосами, которые обеспечивают откачку воздуха из плавильной камеры, камеры загрузки, камеры изложниц и дозатора.


Заключение

В данном реферате были рассмотрены оборудование и основы технологии проектирования электросталеплавильных цехов, а также особенности эксплуатации и конструкции плавильного оборудования электросталеплавильных цехов и цехов специальной электрометаллургии.

К плавильному оборудованию цехов специальной электрометаллургии относятся вакуумные дуговые печи (ВДП), установки электрошлакового переплава (ЭШП), электроннолучевые установки (ЭЛУ), плазменные установки и вакуумные индукционные печи (ВИП). Все перечисленные плавильные агрегаты, кроме ВИП, предназначены для переплава литых или кованых заготовок в медный водоохлаждаемый кристаллизатор с целью улучшения качества металла. Особенностью большинства из перечисленных агрегатов является наличие в плавильной зоне вакуума или нейтральной атмосферы (обычно аргона), что позволяет эффективно удалять из переплавляемого металла газы и неметаллические включения, а также обеспечивать минимальный угар легирующих элементов.


Используемая литература

Никольский Л.Е., 3инуров И.Ю. «Оборудование электросталеплавильных цехов» Учеб. пособие для вузов. - М.: Металлургия, 1993. - С.272


Страницы: 1, 2


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.