рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Анализ и моделирование методов когерентной оптики в медицине и биологии

Некоторые потенциальные потребители возражают против задержки во времени, связанной с проявлением пленки и необходимостью подвергать результирующую кодограмму оптической обработке. Можно было бы сконструировать устройства, непосредственно превращающие картины падающих у- или рентгеновских лучей в модуляцию когерентного света. К сожалению, это не поможет. Поставленным требованиям удовлетворяют кодограммы, интегрированные во времени. Кодограмма, интегрированная во времени, может быть почти мгновенно декодирована при использовании пространственных модуляторов света, работающих в реальном времени [1.76]. Подходящая матрица детекторов позволила бы иметь цифровые (и почти мгновенные) представления изображений и манипуляции с ними. Итак, идеи, навеянные аналогиями с когерентной оптикой, казалось, определенно найдут применения, но в то же время часть операций, выполненных когерентной оптической обработкой, можно заменить цифровой обработкой из соображений скорости. Это движение в сторону цифровой обработки возможно, так как числом элементов изображения в кодограмме относительно легко управлять цифровыми способами. И снова биомедицина имеет дело с довольно небольшим числом элементов изображения, так что способность когерентной оптики обрабатывать большие массивы данных оказывается здесь излишней.


2.3 Трансаксиальная томография


Читателям, специализирующимся в области биомедицинских наук, не нужно введение в трансаксиальную томографию. Остальные читатели, возможно, захотят обратиться к недавно опубликованной обзорной работе [1.30]. Основная идея томографии состоит в получении изображения поперечного сечения объекта путем соответствующей комбинации большого числа рентгеновских изображений, снятых под различными углами относительно объекта. Разумеется, рентгеновская картина не содержит информации о глубине объекта. Каждый рентгеновский луч ослабляется на своем пути в результате интегрального поглощения. В настоящее время вычислительные машины производят всю обработку, но, возможно, это тот случай, когда когерентная обработка может быть полезной. Имеются доказательства предпринимаемых в этой области усилий. Наиболее успешным методом когерентной оптической обработки применительно к трансаксиальной томографии, известным нам, является метод, предложенный Петерсом [1.31]. В оптической вычислительной технике в применении к трансаксиальной томографии, данные обычно записываются на движущуюся фотографическую пленку по мере того, как объект (пациент) вращается между источником узкого «веерного» пучка рентгеновских лучей и пленкой. Поэтому экспозиция в любой момент времени будет проекцией узкого среза объекта на пленку при определенной ориентации объекта. Под «проекцией» мы подразумеваем то, что ослабление интенсивности рентгеновских лучей вдоль линии между источником и любой частью пленки есть интегральное поглощение вдоль этой линии. Простейший способ посмотреть, как должен выглядеть объект в плоскости веерного пучка рентгеновских лучей, состоит в простом «обратном проектировании» и суммировании всех зарегистрированных проекций. Говоря об «обратной проекции», мы имеем в виду предположение (легко осуществляемое в оптике), что поглощение в объекте вдоль каждой линии однородно. Таким образом, созданное изображение является действительной картиной поглощения объекта, свернутой с 1/г (где г — полярная координата поперечного сечения). Операция, обратная свертке (deconvolution), является классической операцией в когерентной оптике. Петерс [1.31] пытался выполнить эту операцию когерентными методами.

Позднее другие исследователи осуществляли эту процедуру некогерентиыми средствами. Третья группа исследователей делала инверсию на вычислительной машине. Сейчас не ясно, какой способ будет доминировать. Исследования в этой области находятся на очень ранней стадии, все основные операции совместимы с когерентной оптикой, и объем данных достаточно велик, чтобы сделать привлекательным ее использование.


2.4 Формирование трехмерных рентгеновских изображений


Мы только что заметили, что рентгеновские изображения сжаты в одном измерении. Метод формирования изображений с помощью кодирующей апертуры можно распространить на извлечение такой информации параллаксными методами в полной аналогии с трансаксиальной томографией. Таким образом, источник рентгеновских лучей специальной формы [1.32], состоящий из, определенным образом расположенных точечных источников рентгеновских лучей [1.33], может записать форму рентгеновской кодограммы, которую можно декодировать последовательно плоскость за плоскостью.


2.5 Кодирование длины волны


Давно вошедшим в практику применением когерентной оптики является* декодирование с помощью решеток [1.34]. Если решетка (например, решетка Рончи или решетчатый объект) освещается когерентным светом, то создается очень отчетливая и предсказуемая дифракционная картина, или Фурье-преобразование. При выборе определенной части такой картины с помощью пространственного фильтра и последующем формировании изображения последнее формируется без решетки. Если решетка покрывает только часть первоначального изображения, создается только эта часть изображения. Произведение решетки, обозначенной r(х,у), и объекта— о(х, у) является закодированным изображением


g(x, у)=о(х, у)r(х,у).


Делая преобразование Фурье обеих частей этого уравнения, получаем


G(fx,fy)= O(fx.fy)* R{fx,fy),


где,


G(fx,fy)=Z[g(xty)], O(fx.fy) = Z[o(x,y)],

R{fx,fy) = Z[r(x,y)].


Z [*]—оператор Фурье-преобразования, * — знак свертки. Так как r(х, у) — периодическая функция, то R(fx, fv) — тоже периодическая функция. Тогда будут иметь место пики в плоскости Фурье-преобразования, соответствующие каждому пику R(fx, fy)-Каждый из этих пиков содержит в его окрестности O(fx, fy). С помощью фильтрации в плоскости Фурье-преобразования мы получаем восстановленный объект о(х, у). Маковский [1.35] изобрел большое число методов, посредством которых решетка, сделанная из чередующихся полосок двух различных материалов, помещается в плоскость изображения специального рентгеновского устройства или стандартной пассивной рентгеновской камеры. Выбором материалов с известными резкими краями поглощения он формирует «контрастное» изображение решетки только для излучения с энергией, попадающей между двумя краями поглощения.

Для тех частей картины излучения, для которого оба компонента решетки являются прозрачными, решетка не видима. Аналогично для тех частей картины излучения, которое задерживается обоими материалами, нет никакой видимой решетки.

Таким образом, только излучение, пропускаемое одним материалом штриха и экранируемое другим, создает картину решетки. Поэтому только такие части изображения преобразуются в соответствующую часть плоскости Фурье-преобразования и, следовательно, вносят вклад в выходное изображение. Этот и подобные методы позволяют в некоторых случаях игнорировать некоторые общие детали (вода, кость и т. д.). Ясно, что такие решетки также применимы при формировании изображений с кодированной апертурой.



3. Обработка сигналов


В этом разделе мы рассмотрим когерентные оптические методы обработки пространственно-представимых «сигналов». Такими сигналами могут быть изображения или другие формы представления данных (например, записи электроэнцефалограмм).


3.1 Обработка изображений


После того как изображение зарегистрировано па некотором носителе, может, однако, потребоваться его некоторая модификация перед тем, как оно примет вид, удобный или желаемый для наблюдения человеком. Все методы обработки изображений, которые мы здесь рассмотрим, основаны па преобразовании имеющихся данных в соответствии с известными правилами. Следовательно, эти методы не добавляют никакой новой информации. Они скорее придают вес информации, уже имеющейся в изображении, путем учета интересов ее пользователя.

Обработка изображений может быть осуществлена на ЭВМ, а также и с помощью когерентной оптики. Обработка изображений на ЭВМ является более универсальной и гибкой, чем когерентная оптическая обработка изображений, поэтому цифровые методы обработки предпочтительны, если они не исключаются стоимостью, удобством или объемом вычислений. Во всех этих случаях оптические методы обработки изображений имеют преимущество. Что касается стоимости, то цифровая обработка требует устройства преобразования изображения из аналоговой формы в цифровую для его ввода в ЭВМ, собственно ЭВМ для преобразования изображения требуемым образом и устройства отображения для представления обработанного изображения наблюдателю. Все эти устройства оказываются более дорогими, чем весь когерентный оптический процессор (входное устройство протяжки пленки, линзы, лазер и выходной экран). Кроме того, оптические вычислительные устройства имеют большое преимущество в скорости обработки информации. Постоянные операции по обработке изображений могут выполняться оптически со скоростью смены пленки на входе оптического процессора. Информационная пропускная способность оптического процессора невероятно велика по сравнению с цифровыми ЭВМ. Это краткое обсуждение, разумеется, не дает достаточной информации для выбора между оптической и цифровой обработкой изображений, но предлагает лишь некоторые предварительные соображения. Положение усложнилось с появлением гибридных оптикоэлектронных вычислительных устройств, которые, в частности, рассмотрены в обзоре Кейсесента [1.36].

Биомедицинские изображения, по-видимому, не содержат достаточно информации, чтобы создать трудности для цифровых ЭВМ, хотя проблемы стоимости и удобства могут потребовать применения оптических методов обработки изображений при условии, что они могут обеспечить выполнение требуемых операций.

В биологии и медицине полезными могут быть следующие виды обработки изображений:

1)             восстановление резкости изображений (когда нерезкие изображения, искаженные вследствие относительного перемещения объекта и камеры в процессе съемки или из-за плохой фокусировки, могут быть улучшены, если в исходных изображениях имеется достаточное отношение сигнал/шум);

2)             подавление шума (когда ослабляется влияние статистически известных шумовых факторов);

3)             сглаживание (когда априори желаемые характеристики изображения, подчеркиваются, а априори нежелательные детали ослабляются);

4)             подчеркивание деталей (когда улучшаются все детали с определенными характеристиками).

3.2 Обработка биомедицинских данных


По ряду причин когерентная оптическая обработка почти периодических биомедицинских данных [электроэнцефалограмм (ЭЭГ), электрокардиограмм (ЭКГ), фонокардиограмм (ФКГ) и др.] является очень привлекательной. Во-первых, оптическими методами легко выполняется большинство операций, которые желательно осуществлять над такими данными (частотный анализ, взаимная корреляция, сглаживание, фильтрация в полосе частот, согласованная фильтрация и т. д.). Во-вторых, анализ осуществляется мгновенно и, следовательно, удобен для использования. Еверетт и др. [1.37] разработали устройство для прямой записи биомедицинских данных па фотопленку в виде, совместимом с многоканальной оптической обработкой.

В другом методе когерентной оптической обработки сигналов, обрабатываемые сигналы не записываются оптимальным образом специально для оптической обработки, а регистрируются с экрана осциллографа или на ленте самописца. При определенных довольно обычных условиях требуемый спектр мощности таких сигналов можно получить как одно измерение Фурье-преобразования двумерной записи входного сигнала [1.38].

Преимуществом любого из этих оптических методов обработки сигналов по отношению к уже достаточно простому методу преобразования аналогового сигнала в цифровую форму и последующего выполнения быстрого преобразования Фурье на ЭВМ должна остаться скорость обработки (отображение результатов вычисления можно получить в реальном времени, если данные вводятся непрерывно с помощью соответствующего входного устройства, способного работать в когерентном свете [1.36]).



4. Представление изображений


Окончательным «потребителем» биомедицинских изображений является биолог или медик. Эффективное использование когерентных оптических методов представления изображений может сделать изображение значительно более легко понимаемым для исследователей. Никакой новой информации при этом не производится, однако имеющаяся информация может быть представлена по-новому, в более удобной для исследователя форме.


4.1 Псевдопараллакс


Мы уже отмечали, что формирование изображения методом кодирования апертуры и акустическая голография позволяют последовательно фокусироваться на различные по глубине плоскости. Если мы зарегистрируем серию таких изображений с одним и тем же коэффициентом поперечного увеличения на прозрачном носителе и расположим их друг за другом на соответствующей глубине, то сможем смоделировать реальный трехмерный объект. Физические транспаранты имеют, однако, некоторые существенные недостатки при их использовании для этой пели. Во-первых, ближние транспаранты мешают наблюдать более удаленные. Во-вторых, неудобно непосредственно производить измерения расстояний между частями объекта. В-третьих, набор транспарантов представляет собой сложный объект, неудобный для хранения, транспортировки или копирования. С другой стороны, мультиплицирование изображений диффузно освещенных транспарантов на соответствующих расстояниях от голограммы обеспечивает одновременное решение всех трех только что отмеченных проблем. Рассмотрим их подробнее по порядку.

Во-первых, благодаря тому, что каждая плоскость регистрируется в отсутствие других и с одинаковой для всех дифракционной эффективностью, каждая плоскость наблюдается независимо от других па соответствующей глубине. Таким образом, в наблюдаемых изображениях дальние плоскости четко видны «сквозь» ближние. Во-вторых, поскольку изображение формируется в воздухе, а не на физическом транспаранте или экране, мы можем поместить линейку внутрь него при измерении расстояний. В-третьих, так как голограмма является легко копируемым плоским объектом, то хранение, транспортировка и копирование оказываются очень удобными.


Рис. 4.1. Несколько фотографий голографлчески синтезированного трехмерного изображения, полученного из двумерных ультразвуковых сканограмм типа В при разных глубинах


Несколько другим представляется отображение в трех измерениях ряда двумерных «срезов» (вместо различных фокальных плоскостей, которые обычно содержат случайные помехи, обусловленные дефокусировкой изображений в других плоскостях). Ультразвуковое сканирование типа В позволяет получить такие двумерные изображения, так же как и проективная томография. Таким образом, цель псевдопараллакса состоит в предоставлении возможности наблюдателю получать основные сведения о трехмерных в действительности соотношениях из серии двумерных изображений. Эти концепции были предложены Редманем [1.39] и затем развиты другими исследователями [1.40, 41]. На рис. 4.1. приведен ряд различных изображений одного и того же объекта, полученных с одной голограммы. Отдельные плоскости представляют собой расположенные на одинаковых расстояниях и параллельно друг другу «срезы» (ультразвуковое сканирование типа В) через оба глаза. Темное пятно выше одного глаза указывает на наличие рака. С помощью псевдопараллакснческих голограмм можно установить размеры, форму и местоположение раковой опухоли.

Имеется несколько схем мультиплексирования для получения псевдопараллакса. Наибольшего внимания заслуживают три: схема, реализующая метод многократных экспозиций, схема с пространственно-разделенным мультиплексированием [1.42] и схема голографического кино [1.43]. Схема с использованием многократных экспозиций (в которой между экспозициями изменяют только транспарант объекта и его местоположение) является самым простым методом мультиплексирования, а также и самым лучшим, если нужно использовать только несколько плоскостей по глубине.

Недостаток метода мультиплексирования па основе многократных экспозиций состоит в том, что дифракционная эффективность каждой из N голограмм приблизительно равна 1/JV2 от дифракционной эффективности голограммы при N=1. Сама по себе дифракционная эффективность имеет небольшое значение. Мы всегда можем использовать более мощный лазер при восстановлении изображений с голограммы. К сожалению, однако, оптический шум фона также пропорционален мощности лазера и по существу не зависит от N. Следовательно, отношение сигнал/фон изменяется как 1/N2. Лучшее что мы можем в принципе сделать — это достичь зависимости вида 1/N. Таким образом, в лучшем случае мы можем поделить яркость поровну. Имеются два пути сделать это, причем оба связаны с изготовлением N отдельных голограмм. Первый предполагает одновременное восстановление изображений со всех голограмм (метод пространственно-разделенного мультиплексирования). Другой основан на последовательном во времени восстановлении голографических изображений (метод голографического кино). В обоих способах наблюдатель думает, что видит стационарное изображение с большим числом планов по глубине. В методе пространственно-разделенного мультиплексирования это достигается путем распределения каждой отдельной голограммы на многих малых участках поверхности фотопластинки. Эти малые участки невидимы в плоскости голограммы и не создают помех в отбеленных голограммах. Помещая перед голограммой маску, использованную при записи отдельного среза по глубине, мы можем наблюдать соответствующие изображения отдельно друг от друга.

Метод голографического кино может быть использован не только для воспроизведения движения, но также и для формирования неподвижной картины со многими планами по глубине. Идея состоит в отображении каждого двумерного изображения, соответствующего определенной глубине, не одновременно, как в рассмотренном выше методе, а последовательно. Если все N изображений показывают, по крайней мере, один раз за время интегрирования глаза, то наблюдатель будет воспринимать их существующими одновременно (и, следовательно, непрерывно). Обычные методы голографического кино потерпели неудачу по очевидной причине: перемещение голограмм должно быть слишком быстрым. Чтобы сменить перед зрителем 10 голограмм размером 10 см за время 1/20 с, необходима скорость протяжки, равная 2000 см*с-1. Однако решение этой проблемы может быть найдено. Продолжая рассматривать предыдущий пример, мы можем записать десять голограмм в виде полос шириной 1 мм (на каждой по двумерному изображению) и скомпоновать затем их в один кадр-полосу шириной 1 см. После этого мы могли бы скопировать этот кадр-полосу необходимое число раз, чтобы сделать непрерывную петлю из голографической пленки. При непрерывном движении петли в считывающем пучке света будут восстанавливаться очень удовлетворительные трехмерные изображения, в которых, однако, вертикальный параллакс будет потерян [1.43]. Требуемая скорость протяжки пленки теперь равна 20 см*с-1, т. е. остается высокой, но вполне реализуемой.


4.2 Другие методы трехмерного отображения


Голография широко используется для трехмерного отображения серии двумерных изображений, полученных обычным образом.

Излагаемая тема требует детального анализа этого метода, однако в нашем распоряжении имеется несколько коротких обзоров [1.44. 45]. Редмен снова был среди пионеров, решавших эту проблему как для изображений, получаемых с помощью электронного микроскопа [1.46], так и для рентгеновских изображений [1.47]. Вместо того чтобы повторять здесь указанные обзоры, мы рассмотрим достаточно подробно один метод трехмерного отображения двумерных изображений. Предшествующие достижения подробно описаны в указанных обзорах.

Метод трехмерного отображения, который мы хотим исследовать, пригоден, в частности, для отображения всего тела и, следовательно, представляет интерес для биологов, медиков, ортопедов, нейрологов и т.д.

Упомянутый нами метод основан на использовании мультиплексных цилиндрических голограмм. Голограмма записывается в два полностью автоматизированных этапа по схеме, которая была применена Кроссом [1.48]. На первом этапе получают серию фотографий объекта с разных ракурсов таким образом, что объект находится более или менее точно в центре воображаемого круга, с границ которого и производится фотографирование. При этом либо объект помещается на вращающемся столе и (поворачивается перед неподвижным наблюдателем, либо вокруг объекта перемещается фотоаппарат. Угловой шаг между фотографиями должен быть небольшим по причинам, которые поясним позднее. Для многих целей достаточно иметь одну фотографию на каждый градус изменения ракурса. Оказывается, что для многих биологических применений требование к качеству изображения может быть весьма умеренным, так что для реализации имеющейся возможности может быть использован фиксированный круг, образованный, например, 360 равномерно распределенными недорогими фотоаппаратами. Второй этап состоит в мультиплицировании полученных фотографий на цилиндрической голограмме. Обычно вытянутая по вертикали голограмма — полоска шириной в 1° освещается лазерным светом, прошедшим через рассеиватель (если используется одно фотографическое разделение). На некотором расстоянии вдали находится плоскость голограммы. Плоскость голограммы маскируется вертикальной щелью шириной 2рr/N, где r — радиус цилиндрической голограммы, которая будет использоваться (~25 см), a N— число мультиплицируемых изображений (360 в использованном нами примере). Опорный пучок формируется точечным источником, расположенным выше транспаранта с изображением объекта. В результате N голограмм оказываются последовательно записанными на ленте пленки длиной 2рr. После проявления (и обычно отбеливания) голограмма сворачивается в цилиндр, чтобы получить цилиндрическую голограмму. Для наблюдения изображения мы освещаем голограмму сверху с помощью точечного источника, а чтобы видеть объект под различными ракурсами, мы либо обходим вокруг голограммы, либо вращаем голограмму. Наблюдаемый объект, который кажется совершенно реальным и трехмерным, оказывается как бы плавающим в центре цилиндра. Кросс [1.48] был также первым, кто предложил интересное и полезное изменение этой схемы. Кроме изменения ракурса па объект между фотографиями он изменяет также и сам объект. Таким образом, стало возможным наблюдать такие действия, как улыбка, прощальный жест рукой, воздушный поцелуй и т. д., если они были сфотографированы. Движение изображения видно тогда, когда вращается цилиндр или когда наблюдатель вращается вокруг него. Можно снимать фильм непрерывно и таким образом зарегистрировать события произвольной продолжительности, а затем их воспроизвести в виде трехмерного изображения.




5. Извлечение данных об объекте


Когерентная оптика может быть использована для извлечения данных о биологических объектах или для облегчения восприятия некоторых характерных черт объекта. При этом она выполняет функцию, которая не является просто формированием изображения и может даже совсем не включать его.


5.1 Измерение геометрических величин


Измерение биологических объектов в трех измерениях стало возможным совсем недавно по двум основным причинам. Во-первых, вплоть до настоящего времени задача обработки биологических данных превосходила возможности большинства ЭВМ и систем памяти. Во-вторых, сами методы измерений были очень несовершенными. Измерения с помощью линеек не обеспечивали адекватного описания сложных объектов. Электронная вычислительная техника разрешила первую проблему, в то время как когерентная оптика решает вторую.

Для очень точных измерений геометрических характеристик объекта с одного ракурса может быть использован метод Гара с сотр. [1.11], описанный ранее как точный оптический метод измерений. Упатниекс с сотр. [1.49] предложили метод для исследования объектов со многих ракурсов, который является обратным только что описанному методу синтеза цилиндрических голограмм Кросса [1.48]. Упатниекс использует ставший теперь обычным метод записи цилиндрических голограмм непосредственно в когерентном свете [1.50, 51]. При записи голограммы живого объекта необходимо использовать короткий импульс лазерного света, достаточный для того, чтобы «заморозить» движение объекта в пределах долей длины волны света с длиной когерентности, достаточной для записи всего объекта по глубине, и с интенсивностью, достаточной для экспонирования низкочувствительных голографических эмульсий. В настоящее время такие лазеры имеются в продаже [1.52]. В своем методе Упатниекс сначала «развертывает» цилиндр и затем одновременно освещает срез, чтобы получить точные двумерные изображения с любого ракурса, который он выбирает.

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.