рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Анализ режимов работы электрических сетей ОАО "ММК им. Ильича" и разработка адаптивной системы управления режимами электропотребления

Шаг 1. x2 = x1 + D x.

Шаг 2. Вычислить W(x1) и W(x2).

Шаг 3.

если W(x1) > W(x2), то x3 = x1 + 2 D x;

если W(x1)< W(x2), то x3 = x1 - D x;

W(x1) > W(x2),

Шаг 4. Вычислить W(x3) и найти

Wmin = min{ W(x1),W(x2), W(x3)},

Xmin = xi, соответствующая Wmin.

Шаг 5. По x1, x2, x3 вычислить x*, используя формулу для оценивания с помощью квадратической аппроксимации.

Шаг 6. Проверка окончания

если | Wmin - W(x*)| < W, то закончить поиск. В противном случае к шагу 7;

если | Xmin - x*| < x, то закончить поиск. В противном случае к шагу 7.

Шаг 7. Выбрать Xmin или x* и две точки по обе стороны от нее. Обозначить в естественном порядке и перейти к шагу 4.

Заметим, что если точка Е задана слишком малой, то á, â, ã, а также fá, fâ, fã будут очень близко друг к другу и значение d (1.29) может стать вообще недостижимыми. Чтобы преодолеть эту трудность, перепишем (1.29) для второй и последней интерполяции:


 (1.31)


1.7.2 Кубическая интерполяция

Квадратичная интерполяция, которая рассматривалась в предыдущем разделе, называется методом Пауэлла и аппроксимирует функцию квадратным трехчленом. В этом разделе рассматривается метод Давидона [6,7], который гарантирует большую точность и аппроксимирует функцию кубическим полиномом.

Для кубической интерполяции в этом методе используются значения функции и ее производной, вычисленных в двух точках.

Рассмотрим задачу минимизации функции f(x) на прямой x0 + hd , то есть минимизацию функции


 (1.32)


Предположим, что известные следующие значения:


 (1.33)


Эту информацию можно использовать для построения кубического полинома a+bh+ch2+dh3, который будет аппроксимировать функцию φ(h) Если p=0 , то уравнения, которые определяют a, b, c, d имеют вид :


 (1.34)


Следовательно, если r является точкой минимума кубического полинома,


 (1.35)


где


Одно из значений этого выражения является минимумом. Друга производная равна 2c +6dh.

Если мы выберем положительный знак, то при



другая производная будет


 (1.36)


 (1.37)


Выбор точки q зависит от нас. Если Gp >0 , то надо выбрать значение q положительным, то есть сделать шаг в направлении уменьшения функции φ(h) , в другом случае значения q надо выбирать отрицательным. Значение должно быть таким, чтобы интервал (0, ) включал в себя минимум. Это будет верным, если φq > φ p или Gp >0.

Если ни одно из этих условий не исполняется, то мы удваиваем значения q , повторяя это в случае необходимости, пока указанный интервал не будет содержать в себе минимум.

Давидон, Флетчер и Пауэлл предложили выбирать q следующим путем:


 (1.38)


где φm - оценка самого малого значения истинного минимума φ(h),

h- константа, значение которой обычно берут 2 или 1.


1.7.3 Квадратичные функции

Квадратичная функция [7,8]


 (1.39)


где a - константа;

b - постоянный вектор;

G - положительно определенная симметричная матрица - имеет минимум в точке x* , где x* определяется следующим путем:


 (1.40)


откуда



Любую функцию можно аппроксимировать в окрестности точки x0 функцией


 (1.41)

где G(x0) - матрица Гессе, вычисленная в точке x0.

Аппроксимацией минимума функции f(x) может быть минимум функции φ(x). Если последний находится в точке xm, то


 (1.42)


откуда



или


 (1.43)


Таким образом точкой xи следующей аппроксимации минимума будет:


 (1.44)


или


 (1.45)


где λи - длина шага, определяется одномерным поиском в направлении G-1(xи)g(xи).


1.8 Метод Нелдера-Мида


Метод Нелдера-Мида (поиск по деформируемому многограннику) является развитием симплексного метода Спендли, Хекста и Химсворта [7,8]. Множество (n+1)-й равноудаленной точки в n-мерном пространстве называется регулярным симплексом. Эта конфигурация рассматривается в методе Спендли, Хекста и Химсворта. Следовательно, в двумерном пространстве симплексом является равносторонний треугольник, а в трехмерном пространстве правильный тетраэдр. Идея метода состоит в сравнении значений функции в (n+1) вершинах симплекса и перемещении в направлении оптимальной точки с помощью итерационной процедуры. В симплексном методе, предложенном первоначально, регулярный симплекс использовался на каждом этапе. Нелдер и Мид предложили несколько модификаций этого метода, допускающих, чтобы симплексы были неправильными. В результате получился очень надежный метод прямого поиска, являющийся одним из самых эффективных, если n<=6.

В методе Спендли, Хекста и Химсворта симплекс перемещается с помощью трех основных операций: отражения, растяжения и сжатия. Смысл этих операций станет понятным при рассмотрении шагов процедуры.

Шаг 1. Найдем значения функции в вершинах симплекса:


f1=f( x1), f2=f(x2) ... fn+1=f(xn+1) (1.46)


Шаг 2. Найдем наибольшее значение функции fh, следующее за наибольшим значением функции fg , наименьшее значение функции fl и соответствующие им точки xh, xg и xl.

Шаг 3. Найдем центр тяжести всех точек, за исключением точки xh. Пусть центром тяжести будет


 (1.47)


и вычислим f(x0)=f0.

Шаг 4. Удобнее всего начать перемещение от точки xh. Отразив точку xh относительно точки x0, получим точку xr и найдем f(xr) = fr.

Операция отражения иллюстрируется рис. 1.6.


Рисунок 1.6 - Операция отражения


Если α>0 - коэффициент отражения, то положение точки xr определяется следующим образом:


xr-x0=α (x0-xh), т.е.


xr=(1+α)x0 -αxh. (1.48)


Замечание.


α= |xr-x0| / |x0 -xh|.


Шаг 5. Сравним значения функций fr и fl.

Если fr<fl, то мы получили наименьшее значение функции. Направление из точки x0 в точку xr наиболее удобно для перемещения. Таким образом, мы производим растяжение в этом направлении и находим точку xe и значение функции fe=f(xe). Рисунок 1.7. иллюстрирует операцию растяжения симплекса. Коэффициент растяжения γ1 можно найти из следующих соотношений: xe-x0=γ (xr-x0), т.е.


xe=γxr+ (1-γ)x0. (1.49)


Рисунок 1.7 - Операция растяжения


Замечание


γ=|xe-x0| / |xr-x0|


Если fe<fl, то заменяем точку xh на точку xe и проверяем (n+1)-ую точку симплекса на сходимость к минимуму (см. шаг 8). Если сходимость достигнута, то процесс останавливается; в противном случае возвращаемся на шаг 2.

Если fe=fl , то отбрасываем точку xe. Очевидно, мы переместились слишком далеко от точки x0 к точке xr. Поэтому следует заменить точку xh на точку xr, в которой было получено улучшение (шаг 5, 1) проверить сходимость и, если она достигнута, вернуться на шаг 2.

Если fr>fl, но fr <=fgто xr является лучшей точкой по сравнению с другими двумя точками симплекса и мы заменяем точку xh на точку xr и, если сходимость не достигнута, возвращаемся на шаг 2, т.е. выполняем пункт 1,б, описанный выше.

Если fr>fl и fr>fgто перейдем на шаг 6.

Шаг 6. Сравним значения функций fr и fh.

Если fr>f h, то переходим непосредственно к шагу сжатия 6,2.

Если fr<fh, то заменяем точку xh на точку xr и значение функции fh на значение функции fr. Запоминаем значение fr>f g из шага 5,2, приведенного выше. Затем переходим на шаг 6,2.

В этом случае fr>f h, поэтому ясно, что мы переместились слишком далеко от точки xh к точке x0. Пытаемся исправить это, найдя точку xc (а затем fс) с помощью шага сжатия, показанного на рис. 1.8.

Если fr>f h, то сразу переходим к шагу сжатия и находим точку xc из соотношения


xc-x0=β(xh-x0), (1.50)


где β(0<b<1)- коэффициент сжатия. Тогда


xc=βxh+(1-β)x0. (1.51)


Если fr<f h, то сначала заменим точку xh на точку xr, а затем произведем сжатие. Тогда точку xc найдем из соотношения


xc-x0=β(xr-x0), т.е.


xc=βxr+(1-β)x0. (1.52)


Шаг 7. Сравниваем значения функций fc и fh.

Если fc<f h, то заменяем точку xh на точку xc, и если сходимость не достигнута ,то возвращаемся на шаг 2.

Если fc>f h, то очевидно, что все наши попытки найти значение меньшее fh закончились неудачей, поэтому мы переходим на шаг 8.

На этом шаге мы уменьшаем размерность симплекса делением пополам расстояния от каждой точки симплекса до xl-точки, определяющей наименьшее значение функции.


Рисунок 1.8 - Шаг сжатия для fr>fh


Рисунок 1.9 - Шаг сжатия для fr<fh


Таким образом, точка xi заменяется на точку


,


т.е. заменяем точку xi точкой .

Затем вычисляем fi для i=1,2,...,(n+1), проверяем сходимость и, если она достигнута, возвращаемся на шаг 2.

Шаг 9. Проверка сходимости основана на том, чтобы стандартное отклонение (n+1) -го значения функции было меньше некоторого заданного малого значения. В этом случае вычисляется


, (1.53)


где .

Если σ<ε, то все значения функции очень близки друг к другу, и поэтому они, возможно, лежат вблизи точки минимума функции xl. Исходя из этого, такой критерий сходимости является разумным, хотя Бокс, Дэвис и Свенн предлагают то, что они считают более "безопасной" проверкой.

Коэффициенты αβγ в вышеприведенной процедуре являются соответственно коэффициентами отражения, сжатия и растяжения. Нелдер и Мид рекомендуют брать α=1, β=0.5 и γ=2. Рекомендация основана на результатах экспериментов с различными комбинациями значений. Эти значения параметров позволяют методу быть эффективным, но работать в различных сложных ситуациях.

Начальный симплекс выбирается на наше усмотрение. В данной программе точка x1 является начальной точкой, затем в программе формируются точки


x2=x1+ke1,

x3=x1+ke2,

xn+1=x1+ken, (1.54)


где k - произвольная длина шага,

ej - единичный вектор.


1.9 Метод неопределенных множителей Лагранжа


Естественно, что решение задач условной оптимизации значительно сложнее решения задач безусловной оптимизации [3]. Естественно стремление сведения задачи условной оптимизации (поиска относительного экстремума) к более простой задаче безусловной оптимизации (поиска абсолютного экстремума). Такая процедура осуществляется в методе Лагранжа. Рассмотрим сущность этого метода.

Необходимо найти условный экстремум нелинейной функции


 (1.55)


n переменных, при m ограничениях


 (1.56)


Ограничения-неравенства преобразуются в равенства, а свободные члены переносятся в левые части ограничений, т.е. система (1.56) приводится к виду


 (1.57)

В соответствии с методом Лагранжа вместо относительного экстремума функции (1.55) при ограничениях (1.57) ищется абсолютный экстремум функции Лагранжа, которая имеет следующий вид:


 (1.58)


где  - неопределенные множители Лагранжа, являющиеся, как и переменные  искомыми переменными.

Видно, что в функцию Лагранжа входит целевая функция плюс каждое ограничение, умноженное на множитель Лагранжа.

Доказано, что относительный экстремум целевой функции (1.55) при ограничениях (1.57) совпадает с абсолютным экстремумом функции Лагранжа (1.58).

Поиск абсолютного экстремума функции (1.58) выполняется известными методами. В частности, определяются и приравниваются к нулю частные производные функции Лагранжа:


 (1.59)

Последние m уравнений представляют собой ограничения (1.57) оптимизационной задачи.

Система (1.59) содержит (m+n) уравнений и такое же количество неизвестных.

Решение системы (1.59) даст координаты абсолютного минимума функции Лагранжа (1.58) или относительного минимума целевой функции (1.55) при ограничениях (1.57).

Решение системы (1.59) выполняется известными методами вычислительной математики. Если система (1.59) линейная, используется, как правило, метод Гаусса. Если система (1.59) нелинейная - метод Ньютона.


1.10 Выбор метода оптимизации


Перед выбором метода оптимизации, проведем краткий анализ задач, которые должно решать разрабатываемое программное обеспечение:

программа должна решать задачу условной минимизации, т.е. находить относительный экстремум, так как в математической модели кроме линейных ограничений будут иметь место и нелинейные;

так как целевая функция - функция нескольких переменных, то она может иметь несколько экстремумов, и в этом случае программа должна осуществлять поиск локального минимума.

Проведя анализ наиболее часто использующихся методов оптимизации, для реализации поставленной цели был выбран градиентный метод квадратичного программирования, который представляет собой наиболее эффективный из вышеперечисленных градиентных методов, модифицированный с методами полиномиальной аппроксимации.

Предполагается, что целевая функция и граничные условия аппроксимируются квадратичными зависимостями или полиномами второго порядка. Более подробно этот метод будет рассмотрен далее в разделе "Разработка программного обеспечения метода оптимизации".

Данный метод позволяет создать надежную программу, соответствующую всем вышеперечисленным требованиям.


2. Разработка метода оптимизации по реактивной мощности


Требуемая в электроэнергетической системе (ЭЭС) суммарная мощность компенсирующих устройств определяется из уравнения баланса реактивной мощности (6.1). Эту мощность необходимо разместить в узлах электрической сети с минимальными затратами.


, (2.1)


где  - суммарная реактивная мощность, генерируемая в ЭЭС, включая реактивную мощность, поступающую из соседних ЭЭС;

 - суммарная реактивная мощность потребителей ЭЭС, включая реактивную мощность, отдавая в соседние ЭЭС;

 - суммарная реактивная мощность собственных нужд электростанций;

 - суммарные потери реактивной мощности;

 - суммарное потребление реактивной мощности в ЭЭС.

Рассмотрим простейшую схему существующей сети (рис.2.1). от источника питания с напряжением U через сопротивление сети R получает питание нагрузка мощностью S=P+jQ [9]. На шинах нагрузки установлено компенсирующее устройство мощностью Qк.


Рисунок 2.1 - Простейшая схема компенсации реактивной мощности


Потери активной мощности в линии при отсутствии у потребителя компенсирующего устройства () составляют


. (2.2)


При установке у потребителя компенсирующего устройства () эти потери уменьшатся до величины


. (2.3)


Таким образом, компенсация реактивной мощности позволяет уменьшить потери активной мощности в схеме электроснабжения и, следовательно, улучшить технико-экономические показатели этой схемы.

Оценим влияние КУ на затраты в сети.

Выражение для суммарных затрат на передачу мощности к нагрузке при установке КУ будет иметь вид:


 (2.4)


где ЗК - затраты на КУ;

соΔР - затраты на покрытие потерь активной мощности в сети;

со - стоимость единицы потерянной активной мощности;

зк - удельные затраты на КУ.

Для определения минимума функции З приравняем к нулю ее производную от переменной QK:

 (2.5)


Из (2.5) определяется экономически целесообразная реактивная мощность, передача которой от источника к потребителю отвечает минимуму затрат З


 (2.6)


Величина QЭ не зависит от активной мощности Р, а зависит лишь от соотношения стоимостных показателей зк и со и параметров сети U и R, по которой передается мощность.

Вопрос о размещении компенсирующих устройств в электрической сети реальной ЭЭС представляет собой сложную оптимизационную задачу. Сложность заключается в том, что электроэнергетические системы являются большими системами, состоящими из взаимосвязанных подсистем. Рассматривать изолированно каждую отдельную подсистему нельзя, поскольку свойства больших систем определяются характером взаимосвязей отдельных подсистем.

При анализе больших систем используется системный подход [9,10,11], согласно которому анализ большой системы выполняется при разделении ее на подсистемы, непосредственно не связанные между собой, но влияющие друг на друга через систему более высокого уровня.

Применительно к рассматриваемому вопросу электрическая сеть представляется разными уровнями, как это показано на рис. 2.2. верхний уровень - это электрическая сеть напряжением 110 кВ и выше. Эта сложнозамкнутая электрическая сеть, представляемая полной схемой замещения, показана на рис.2.2 условно, как ЭС1. Реактивные мощности, вырабатываемые генераторами электростанций QЭС, компенсирующими устройствами QК, линиями электропередачи QС, а также реактивные мощности, протекающие по связям с соседними ЭС2 и ЭС3 (Q12, Q21, Q13, Q31) обеспечивают в ЭС1 располагаемую реактивную мощность Qр1.


Рисунок 2.2 - Схема размещения КУ в электрической сети


Второй уровень - это множество n разомкнутых местных распределительных сетей напряжением 35 кВ и ниже, присоединенных к n узлам электрической сети верхнего уровня через трансформаторы Т. Эти местные распределительные сети непосредственно не связаны между собой, но влияют друг на друга через сеть верхнего уровня. Синхронные генераторы, компенсаторы и двигатели в каждой такой распределительной сети представлены одной эквивалентной синхронной машиной G. От местных электрических сетей через распределительные трансформаторы Т1 питаются низковольтные потребители P+jQ.

Компенсирующие устройства могут устанавливаться на шинах высшего (jQкв) и низшего (jQкс) напряжения трансформаторов Т, а также на шинах 0,4 кВ распределительных трансформаторов Т1 и в самой сети 0,4 кВ (jQкн). Значение мощностей этих КУ и подлежит определению.

В общем виде задача оптимизации размещения КУ формулируется следующим образом: определить реактивные мощности имеющихся в узлах 6…35 кВ синхронных машин G, мощности КУ в сетях всех напряжений Qкв, Qкс, Qкн, а также значения реактивных мощностей Qэi (i=1, 2, …n), передаваемых в сети потребителей, при которых обеспечивается минимум суммарных затрат.

Расчеты компенсации реактивной мощности для сетей всех видов выполняются как при проектировании развития электрических сетей, так и в условиях их эксплуатации. При проектировании определяются мощности КУ и решается задача их распределения в электрической сети. В условиях эксплуатации определяют оптимальные режимы имеющихся КУ в течение суток. Критериями оптимальности в этом случае служат минимум потерь мощности и энергии и соответствие отклонений напряжений допустимым значениям.

При проектировании схемы электроснабжения, как правило, минимизируются денежные затраты на эту схему. Снижение потерь мощности за счет установки КУ уменьшает затраты на схему, по следующим причинам:

каждый потерянный кВт мощности необходимо выработать на электростанциях и, следовательно, затратить на это денежные средства;

генерация недополученной реактивной мощности на электростанциях обходится гораздо дороже, чем потребление (в 3 раза!).

Однако и компенсирующие устройства требуют денежных затрат.

В связи с этим возникает задача определения оптимальной мощности компенсирующих устройств, отвечающей минимуму суммарных затрат. Такая задача относится к задаче безусловной оптимизации и может быть решена, например, градиентными методами.

Рассмотрим такую задачу для магистральной схемы электроснабжения (рис. 2.3). Необходимо определить мощности компенсирующих устройств QК1 и QК2 в узлах 1 и 2 исходя из условия минимума суммарных затрат на установку этих устройств и покрытие потерь активной мощности в схеме.


Рисунок 2.3 - Схема электроснабжения


Исходные данные:

напряжение схемы U;

сопротивления линий R1 и R2;

реактивные нагрузки узлов 1 и 2 Q1 и Q2;

удельные затраты на установку компенсирующих устройств zo;

удельные затраты на покрытие потерь активной мощности со.

Целевая функция, представляющая собой суммарные затраты на установку компенсирующих устройств и покрытие потерь активной мощности в схеме, имеет следующий вид


 (2.7)


где а1=R1∙co∙10-3/U2=0,0006;

а2=R2∙co∙10-3/U2=0,0004.

Введение числового коэффициента 10-3 необходимо для приведения всех составляющих целевой функции к одной размерности (у.е.).

Для решения задачи выберем метод покоординатного спуска. Определим частные производные целевой функции Z по переменным Q1 и Q2:


 (2.8)


Примем исходное приближение:


 (2.9)


Для этих значений вычислим значения целевой функции и ее частных производных.

Примем, что в направлении переменной Qk2 целевая функция Z убывает сильнее, чем в направлении переменной Qk1, т.е.


 (2.10)


В направлении переменной Qk2 и начнем спуск.

Примем величину шага =400 квар. Первое приближение (первый шаг) будет Qk11=0, Qk21=400 квар. Рассчитываем значение целевой функции Z1.

Второй шаг: Qk12=0, Qk22=400 квар. Рассчитываем значение целевой функции Z2.

Спуск по координате Qk2 следует продолжать до тех пор, пока Zn<Zn-1. Как только Zn становится больше предыдущего значения Zn-1, следует спуск координате Qk2 прекратить и вернуться к значениям переменных Qk1n-1 и Qk2n-1, полученным на n-1 шаге.

Выполним новый шаг в направлении другой переменной Qk1. Находится новое значение целевой функции Z. Спуск по этой переменной продолжается так же, как и в направлении Qk2 - до тех пор, пока Zm<Zm-1.

Точка с полученными координатами Qk1m-1, Qk2n-1 находится в окрестности минимума целевой функции Z. При принятой длине шага =400квар более точное решение получено быть не может. Для получения более точного решения необходимо уменьшить шаг и продолжить спуск. Абсолютно точно что, чем меньше шаг, тем точнее будет результат. Посредством ручного расчета мы не можем добиться такой точности. Для решения этой задачи целесообразно будет использовать программное обеспечение, предназначенное для решения задачи нелинейного программирования с нелинейными ограничениями. Одним из таких языков программирования является язык С++.

Это была рассмотрена задача безусловной оптимизации, т.е. нахождения абсолютного минимума. При решении поставленной задачи для нахождения оптимального режима работы сети ОАО "ММК им. Ильича" требуется найти относительный минимум, так как система ограничений будет иметь нелинейный вид (см. далее "Разработка программного обеспечения"). Таким образом, перед нами ставится задача условной оптимизации по реактивной мощности, для которой мы применяем выбранный ранее градиентный метод квадратичного программирования.


3. Разработка программного обеспечения метода оптимизации


Для оптимизации режимов по реактивной мощности разработан комплекс программ (см. рис. 3.1). Его условно можно разделить на две части:

интерфейсная часть, разработанная в удобном, понятном виде, предназначенная для работы с пользователем любого уровня;

расчетная часть, которая непосредственно выполняет необходимые расчеты для получения оптимальных режимов.

В интерфейсную часть комплекса входят программы ввода следующих параметров:

линий;

трансформаторов;

компенсирующих устройств;

реакторов;

нагрузок.

В расчетную часть входят следующие программы:

формирования узловой матрицы;

формирования векторов узловых токов без оптимизации мощностей компенсирующих устройств;

расчета узловых напряжений;

формирования векторов ограничений узловых токов;

расчета оптимальных значений узловых напряжений;

расчета оптимальных значений мощностей компенсирующих устройств.

Для расчета установившегося неоптимального режима разработаны программы:

формирования матриц узловых проводимостей,

формирования узловых токов источников,

Страницы: 1, 2, 3, 4, 5


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.