![]() |
|
|
Лекции по физике за 2 семестрЧто такое молния? Пробой, это порводничок, он сам собой замыкается. Происходит разряд, исчезает поле между облаком и землёй. Гром, это что такое? Выделение энергии этого поля. Весь этот гром, треск и молния – это выделение энергии между облаком и землёй. Энергия конденсатора – это . Конечно, чтобы взять этот интеграл, нужно знать всё поле во всём пространстве, и каким же образом получается такая простая формула ? Ёмкость, на самом деле, это интегральная характеристика, для того, чтобы найти ёмкость какой-то системы зарядов, нужно знать поле во всём пространстве. Вся трудность вычисления интеграла эквивалентна трудности вычисления ёмкости. Стационарные магнитные поля Напомню, как мы добыли электростатику. У нас есть четыре уравнения Максвелла, в которых сидит всё электричество. Мы там положили , , получили электростатику. Мы теперь ослабим эти наложенные условия, мы теперь положим , но , получим стационарное магнитное поле. То есть со временем ничего не меняется, но плотность тока , а связано с движением заряда. Заряды двигаются, но стационарно, двигаются так, что в любой точке пространства со временем ничего не меняется. Наглядный пример: течёт река, массы воды движутся, но течение стационарно, скорость воды в каждой точке одна и та же. Когда ветер дует то туда, то сюда порывами, это не стационарное течение, а, если ветер дует без порывов: в ушах свистит и всё, а ничего не меняется со временем, то это пример стационарного течения. Уравнения электростатики (первое и второе уравнения Максвелла) остаются без изменения, а третье и четвёртое будут иметь вид: Стационарное означает неменяющееся со временем. Ладно, свойства этого поля мы обсудим в следующий раз. 7 Мы изучаем стационарное магнитное поле. Напомню исходные положения: , то есть заряды движутся, но стационарно. Это поле будет описываться двумя уравнениями (третьим и четвёртым уравнениями Максвелла): . Что означает третье уравнение? Что поток вектора через любую замкнутую поверхность равен нулю, где бы эта поверхность ни была взята и какую бы форму она не имела. Это означает, что вклады в поток знакопеременны, то есть где-то вектор направлен внутрь поверхности, а где-то наружу. Формально из равенства 3. можно показать, что, сколько линий выходит из поверхности, столько в неё и входит. Иначе, никакая силовая линия не заканчивается внутри замкнутой поверхности и никакая не начинается. Как это может быть? Это может быть только так: все силовые линии замкнуты. Короче говоря, из третьего уравнения следует, что силовые линии индукции магнитного поля замкнуты. То есть силовая линия может как-то идти, идти, но она обязательно вернётся и укусит себя за хвост. Для электрического поля мы имели такую вещь: . Слева конструкция такая же, но справа стоял заряд внутри поверхности. Отсюда следствия: 1) силовые линии замкнуты и 2) отсутствуют магнитные заряды, то есть нет таких частиц, из которых выходили бы таким образом (см. рис.7.1) линии индукции, такие частицы называются магнитными монополями.
Теперь обратимся к четвёртому уравнению. Читаем его: возьмём замкнутый контур, зададимся направлением обхода (обход и нормаль должны образовывать правый винт), в каждой точке определяем , берём скалярное произведение , получаем число, для всех элементов находим эти скалярные произведения, получаем циркуляцию по контуру, это некоторое число. Уравнение утверждает, что, если эта циркуляция отлична от нуля, то отлична от нуля правая часть. А здесь что? Плотность тока связана с движущимися зарядами, скалярное произведение - это заряд, который проскакивает через эту площадку за единицу времени. Если циркуляция по контуру отлична от нуля, то это означает, что какие-то заряды пересекают поверхность, натянутую на этот контур. Это смысл четвёртого уравнения.
Тогда мы можем сделать такой вывод: силовые линия магнитного поля замкнута, возьмём в качестве контура какую-то линию магнитного поля, по этой линии , потому что произведение не меняет знак. Это означает, что, если я возьму поверхность S, натянутую на силовую линию магнитного поля, то, заведомо, эту поверхность пересекают заряды таким образом: Можно сказать, что силовая линия магнитного поля всегда охватывает ток, иначе говоря, это выглядит так: если мы имеем проводник, по которому течёт ток Á, для любого контура, который охватывает проводник с током, ; если имеется несколько проводников, опять я возьму контур, поверхность, на него натянутую, её протыкают два проводника, тогда , при чём с учётом знаков: ток Á1 - положительный, Á2 -отрицательный. Мы имеем тогда . Вот это сразу общие такие свойства магнитного поля и тока. Значит, силовая линия всегда охватывает ток. Магнитное поле бесконечного прямого проводника с токомПусть вдоль оси OZ расположен бесконечно длинный проводник, по которому течёт ток с силой Á. А сила тока это что такое? , - заряд, который пересекает поверхность S за время . Система обладает осевой симметрией. Если мы введём цилиндрические координаты r, j, z, то цилиндрическая симметрия означает, что и, кроме того, , при смещении вдоль оси OZ, мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия и . Это означает вот что: силовые линии магнитного поля – окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле. Пусть у нас это проводник. Вот ортогональная плоскость, вот окружность радиуса r, я возьму тут касательный вектор, вектор, направленный вдоль j, касательный вектор к окружности. Тогда, , где . В качестве замкнутого контура выбираем окружность радиуса r=const. Пишем тогда , сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности. , где Á – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль: . Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величина В убывает как при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника. Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии (R – радиус кривизны проводника), будет справедлива эта формула. Магнитное поле, создаваемое произвольным проводником с током. Закон Био-Савара. Пусть мы имеем произвольный проводник с током, и нас интересует магнитное поле, создаваемое куском этого проводника в данной точке. Как, кстати, в электростатике находили мы электрическое поле, создаваемое каким-то распределением заряда? Распределение разбивали на малые элементы и вычисляли в каждой точке поле от каждого элемента (по закону Кулона) и суммировали. Такая же программа и здесь. Структура магнитного поля сложнее, чем электростатическое, кстати, оно не потенциально, замкнутое магнитное поле нельзя представить как градиент скалярной функции, у него другая структура, но идея та же самая. Разбиваем проводник на малые элементы. Вот я взял маленький элемент , положение этого элемента определяется радиус-вектором , а точка наблюдения задаётся радиус-вектором . Утверждается, что этот элемент проводника создаст в этой точке индукцию по такому рецепту: . Откуда берётся этот рецепт? Его нашли в своё время экспериментально, трудно мне, кстати, представить, как это можно было экспериментально найти такую достаточно сложную формулу с векторным произведением. На самом деле это следствие четвёртого уравнения Максвелла . Тогда поле, создаваемое всем проводником: , или, мы можем написать теперь интеграл: . Понятно, что вычислять такой интеграл для произвольного проводника занятие не очень приятное, но в виде суммы это нормальная задача для компьютера. Пример. Магнитное поле кругового витка с током.
Пусть в плоскости YZ располагается проволочный виток радиуса R, по которому течёт ток силы Á. Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие: Общая картина силовых линий тоже просматривается (рис.7.10).
По идее, нас интересовало бы поле , но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х,0,0). Направление вектора определяется векторным произведением . Вектор имеет две составляющие: и . Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль. . А теперь пишем: , =, а . , и, наконец1), . Мы добыли такой результат: А теперь, в качестве проверки, поле в центре витка равна: . Поле длинного соленоида. Соленоидом называется катушка, на которую намотан проводник. Магнитное поле от витков складывается, и не трудно догадаться, что структура силовых линий поля такая: они внутри идут густо, а дальше разреженно. То есть для длинного соленоида снаружи будем считать =0, а внутри соленоида =const. Внутри длинного соленоида, ну, в окрестности. Скажем, его середины, магнитное поле практически однородно, а вне соленоида это поле мало. Тогда мы можем найти это магнитное поле внутри следующим образом: вот я беру такой контур (рис.7.13), а теперь пишем: 1). - это полный заряд. Эту поверхность протыкают витки (полный заряд)=(число витков, протыкающих эту поверхность).
Мы получим такое равенство из нашего закона: , или . 8 Поле на большом расстоянии от ограниченного распределения тока. Магнитный момент Имеется в виду, что в ограниченной области пространства текут токи, тогда есть простой рецепт для нахождения магнитного поля, которое создаёт это ограниченное распределение. Ну, кстати, под это понятие ограниченное пространство подпадает любой источник, поэтому тут никакого сужения нет. Если характерный размер системы , то . Напомню, что мы решали аналогичную проблему для электрического поля, создаваемого ограниченным распределением заряда, и там появилось понятие дипольного момента, и моментов более высокого порядка. Решать эту задачу я здесь не буду.
Распределение характеризуется магнитным моментом . Магнитный момент , где – плотность тока или, если учесть, что мы имеем дело с движущимися заряженными частицами, то вот эту формулу для сплошно среды мы можем выразить через заряды частиц таким образом: . Что эта сумма выражает? Повторяю, распределение тока создаётся тем, что движутся эти заряженные частицы. Радиус-вектор i-ой частицы векторно умножается на скорость i-ой частицы и всё это умножается на заряд этой i-ой частицы. Такая конструкция, кстати, у нас в механике была. Если вместо заряда без множителя написать массу частицы, то, что это будет изображать? Момент импульса системы. Если мы имеем частицы одного сорта (, например, электроны), то тогда мы можем написать . Значит, если ток создаётся частицами одного сорта, то магнитный момент связан просто с моментом импульса этой системы частиц. Магнитное поле, создаваемое этим магнитным моментом равно: (8.1) Магнитный момент витка с током Пусть у нас имеется виток и по нему течёт ток силы Á. Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка , , где S – поперечное сечение витка, а – единичный касательный вектор. Тогда магнитный момент определён так: . А что такое ? Это вектор, направленный вдоль вектора нормали к плоскости витка . А векторное произведение двух векторов – это удвоенная площадь треугольника, построенного на этих векторах. Если dS – площадь треугольника, построенного на векторах и , то . Тогда мы пишем магнитный момент равняется . Значит, (магнитный момент витка с током)=(сила тока)(площадь витка)(нормаль к витку)1). А теперь мы формулу (8.1) применим для витка с током и сопоставим с тем, что мы добыли в прошлый раз, просто для проверки формулы, поскольку формулу эту я слепил по аналогии. Пусть мы имеем в начале координат виток произвольной формы, по которому течёт ток силы Á, тогда поле в точке на расстоянии х равно: (). Для круглого витка , . На прошлой лекции мы находили магнитное поле круглого витка с током, при эти формулы совпадают. На больших расстояниях от любого распределения тока магнитное поле находится по формуле (8.1), а всё это распределение характеризуется одним вектором, который называется магнитный момент. Кстати, простейший источник магнитного поля это магнитный момент. Для электрического поля простейший источник это монополь, для электрического поля следующий по сложности это электрический диполь, а для магнитного поля всё начинается с этого диполя или магнитного момента. Это, ещё раз обращаю внимание, постольку, поскольку нет этих самых монополей. Был бы монополь, тогда было бы всё также как в электрическом поле. А так у нас простейший источник магнитного поля это магнитный момент, аналог электрического диполя. Наглядный пример магнитного момента – постоянный магнит. Постоянный магнит обладает магнитным моментом, и на большом расстоянии его поле имеет такую структуру:
Сила, действующая на проводник с током в магнитном поле Мы видели, что на заряженную частицу действует сила, равная . Ток в проводнике есть результат движения заряженных частиц тела, то есть равномерно размазанного заряда в пространстве нет, заряд локализован в каждой частице. Плотность тока . На i-ую частицу действует сила . Выберем элемент объёма и просуммируем силы, действующие на все частицы этого элемента объёма . Сила, действующая на все частицы в данном элементе объёма, определяется как плотность тока на магнитное поле и на величину элемента объёма. А теперь перепишем её в дифференциальном виде: , отсюда – это плотность силы, сила, действующая на единицу объёма. Тогда мы получим общую формулу для силы: .
Пусть имеется линейный проводник, ток течёт с силой Á. Выберем элемент проводника , объём этого элемента dV, , . Сила, действующая на элемент проводника перпендикулярна плоскости треугольника, построенного на векторах и , то есть направлена перпендикулярно к проводнику, а полная сила находится суммированием. Вот, две формулы решают эту задачу. Магнитный момент во внешнем поле Магнитный момент сам создаёт поле, сейчас мы собственное его поле не рассматриваем, а нас интересует, как ведёт себя магнитный момент, помещённый во внешнее магнитное поле. На магнитный момент действует момент силы, равный . Момент силы будет направлен перпендикулярно к доске, и этот момент будет стремиться развернуть магнитный момент вдоль силовой линии. Почему стрелка компаса показывает на северный полюс? Ей, конечно, нет дела до географического полюса Земли, стрелка компаса ориентируется вдоль силовой линии магнитного поля, которая, в силу случайных причин, кстати, направлена примерно по меридиану. За счёт чего? А на неё действует момент. Когда стрелка, магнитный момент, совпадающий по направлению с самой стрелкой, не совпадает с силовой линией, появляется момент, разворачивающий её вдоль этой линии. Откуда у стрелки компаса берётся магнитный момент, это мы ещё обсудим. Кроме того, на магнитный момент действует сила , равная . Если магнитный момент направлен вдоль , то сила втягивает магнитный момент в область с большей индукцией. Эти формулы похожи на то, как действует электрическое поле на дипольный момент, там тоже дипольный момент ориентируется вдоль поля и втягивается в область с большей напряжённостью. Теперь мы можем рассмотреть вопрос о магнитном поле в веществе. Магнитное поле в веществе
Атомы могут обладать магнитными моментами. Магнитные моменты атомов связаны с моментом импульса электронов. Уже была получена формула , где – момент импульса частицы создающей ток. В атоме мы имеем положительное ядро и электрон е, вращающийся по орбите, на самом деле, в своё время мы увидим, что эта картина не имеет отношения к реальности, так нельзя представлять электрон, который вращается, но остаётся то, что электрон в атоме обладает моментом импульса, и этому моменту импульса будет отвечать такой магнитный момент: . Наглядно, заряд, вращающийся по окружности, эквивалентен круговому току, то есть это элементарный виток с током. Момент импульса электрона в атоме квантуется, то есть может принимать только определённые значения, вот по такому рецепту: , , где вот эта величина – это постоянная Планка. Момент импульса электрона в атоме может принимать лишь определённые значения, мы сейчас не будем обсуждать, как это получается. Ну, и вследствие этого магнитный момент атома может принимать определённые значения. Эти детали нас сейчас не волнуют, но, по крайней мере, будем представлять, что атом может обладать определённым магнитным моментом, есть атомы, у которых нет магнитного момента. Тогда вещество, помещённое во внешнее поле намагничивается, а это означает, что оно приобретает определённый магнитный момент вследствие того, что магнитные моменты атомов ориентируются преимущественно вдоль поля. Элемент объёма dV приобретает магнитный момент , при чём вектор имеет смысл плотности магнитного момента и называется вектором намагничивания. Имеется класс веществ, называемых парамагнетики, для которых , намагничивается так, что магнитный момент совпадает с направлением магнитного поля. Имеются диамагнетики, которые намагничиваются, так сказать, «против шерсти», то есть магнитный момент антипараллелен вектору , значит, . Это более тонкий термин. То, что вектор параллелен вектору понятно, магнитный момент атома ориентируется вдоль магнитного поля. Диамагнетизм связан с другим: если атом не обладает магнитным моментом, то во внешнем магнитном поле он приобретает магнитный момент, при чём магнитный момент антипараллелен . Этот очень тонкий эффект связан с тем, что магнитное поле влияет на плоскости орбит электронов, то есть оно влияет на поведение момента импульса. Парамагнетик втягивается в магнитное поле, диамагнетик выталкивается. Вот, чтобы это не было беспредметно, медь – это диамагнетик, и алюминий – парамагнетик, если взять магнит то алюминиевая лепёшка будет притягиваться магнитом, а тогда медная будет отталкиваться. Понятно, что результирующее поле, когда вещество внесено в магнитное поле, это есть сумма внешнего поля и поля, создаваемого за счёт магнитного момента вещества. Теперь обратимся к уравнению , или в дифференциальной форме . Теперь такое утверждение: намагничивание вещества эквивалентно наведению в нём тока с плотностью . Тогда это уравнение мы напишем в виде . Проверим размерность: М – это магнитный момент в единице объёма , размерность . Когда вы пишете какую-нибудь формулу, то размерность всегда полезно проверять, особенно если формула эта собственной выводки, то есть вы её не срисовали, не запомнили, а получили. 9 Намагниченность характеризуется вектором , он так и называется вектор намагниченности, это плотность магнитного момента или магнитный момент в единицу времени. Я говорил, что намагниченность эквивалентна появлению тока , так называемого молекулярного тока, и это уравнение эквивалентно такому: , то есть мы можем считать, что нет намагниченности, а есть такие токи. Зададимся таким уравнением: , - это настоящие токи, связанные с конкретными носителями зарядов, а это токи, связанные с намагниченностью. Электрон в атоме это круговой ток, возьмём область внутри, внутри образца все эти токи уничтожаются, но наличие таких круговых токов эквивалентно одному общему току, который обтекает этот проводник по поверхности, отсюда и такая формула. Перепишем это уравнение в таком виде: , . Этот тоже отправим влево и обозначим , вектор называется напряжённостью магнитного поля, тогда уравнение приобретёт вид . (циркуляция напряжённости магнитного поля по замкнутому контуру) = (сила тока через поверхность этого контура). |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |