рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Методы и средства контактных электроизмерений температуры

Промышленные платиновые термометры используются в диапазоне температур от —200 до +650° С, однако есть данные, свидетельствующие о возможности применения платиновых термометров для измерения температур от —264 до +1000° С.

Основным преимуществом никеля является его относительно высокое удельное сопротивление, но зависимость его сопротивления от температуры линейна только для температур не выше 100° С. При условии хорошей изоляции от воздействия среды никелевые терморезисторы можно применять до 250—300° С. Для более высоких температур его ТКС неоднозначен. Медные и никелевые терморезисторы выпускают из литого микропровода в стеклянной изоляции. Микропроволочные терморезисторы герметизированы, вы-сокостабильны, малоинерционны и при малых габаритах могут иметь сопротивления до десятков килоом.

Высокий ТКС имеют вольфрам и тантал, но при температуре свыше 400° С они окисляются и применяться не могут. Для низкотемпературных измерений хорошо зарекомендовали себя некоторые фосфористые бронзы. Кроме того, для измерений низких температур находят применение индиевые, германиевые и угольные терморезисторы.

Некоторые характеристики металлов, используемых в терморезисторах, приведены в табл. 3.


Таблица 3:

Материал

 

ТКС в диапазоне 0-100°С

 

Удельное сопротивление при 20 °С, Оm∙mm2/m

Температура плавления, °С

 

Термо-э.д.с. в паре с медью (0-500 °С), мкВ/К

Платина

0,0039

0,105

1773

7,5

Медь

0,00427

0,017

1083

о

Никель

0,0069

0,08

1455

22,5

Вольфрам

0,0048

0,055

3410

0,5


Погрешности, возникающие при измерении температуры термометрами сопротивления, вызываются нестабильностью во времени начального сопротивления термометра и его ТКС, изменением сопротивления линии, соединяющей термометр с измерительным прибором, перегревом термометра измерительным током.

Термометры сопротивления относятся к одним из наиболее точных преобразователей температуры. Так, например, платиновые теоморезисторы позволяют измерять температуру с погрешностью порядка 0,001° С.

Полупроводниковые терморезисторы отличаются от металлических меньшими габаритами и большими значениями ТКС.

ТКС полупроводниковых терморезисторов (ПТР) отрицателен и уменьшается обратно пропорционально квадрату абсолютной температуры: a = B/Θ2. При 20° С величина ТКС составляет 2—8 проц/К.

Температурная зависимость сопротивления ПТР (рис. 7, кривая 2) достаточно хорошо описывается формулой RT = AeB/Θ, где Θ — абсолютная температура; А — коэффициент, имеющий размерность сопротивления; В — коэффициент, имеющий размерность температуры. На рис. рис. 7 для сравнения приведена температурная зависимость для медного терморезистора (кривая 1). Для каждого конкретного ПТР коэффициенты А и В, как правило, постоянны, за исключением некоторых типов 1 ПТР (например, СТ 3-14), для последних В может принимать два разных значения в зависимости от диапазона измеряемых температур.

Если для применяемого ПТР не известны коэффициенты А и В, но известны сопротивления R1 и R2 при Θ1 и Θ2, то величину сопротивления и коэффициент В для любой другой температуры можно определить из соотношений

'

Конструктивно терморезисторы могут быть изготовлены самой разнообразной формы. На рис. 8 показано устройство нескольких типов терморезисторов. Терморезисторы типа ММТ-1 и КМТ-1 представляют собой полупроводниковый стержень, покрытый эма­левой краской с контактными колпачками и выводами. Этот тип терморезисторов может быть использован лишь в сухих помещениях.,

Терморезисторы типов ММТ-4 и КМТ-4 заключены в металли­ческие капсулы и герметизированы, благодаря чему они могут быть использованы в условиях любой влажности и даже в жидкостях, ие являющихся агрессивными относительно корпуса терморезистора.

Особый интерес представляют миниатюрные полупроводниковые терморезисторы, позволяющие измерять температуру малых объектов с минимальными искажениями режима работы, а также температуру, изменяющуюся во времени. Терморезисторы СТ1-19 и СТЗ-19 имеют каплевидную форму. Чувствительный элемент в них герметизирован стеклом и снабжен выводами из проволоки, имеющей низкую теплопроводность. В терморезисторе СТЗ-25 чувствительный элемент также помещен в стеклянную оболочку, диаметр которой доведен до 0,5—0,3 мм. Терморезистор с помощью выводов прикреплен к траверсам.

Рис. 8

 

В табл. 4 представлены основные характеристики некоторых ПТР. В графе «номинальные сопротивления» приведены крайние значения рядов номинальных сопротивлений, нормируемых для большинства ПТР при 20° С. Исключение составляют ПТР типов


Таблица 4

Тип ПТР

Номинальное сопротивление, кОм

Постоянная В,

K∙1012

Диапазон рабочих температур,

Коэффициент рассеяния, мВт/К

Постоянная времени (нe более), с

КМТ-1

.22—1000

36—72

От —60 до +180

5

85

ММТ-1

1—220

20,6—43

От —60 до +125

5

85

СТЗ-1

0,68—2,2

28,7—34

От —60 до +125

5

85

КМТ-4

22—1000

36—72

От —60 до +125

6

115

ММТ-4

1—220

20,6—43

От —60 до +125

6

115

ММТ-6

10—100

³20,6

От —60 до +125

1,7

35

СТЗ-6

6,8—8,2

20,5-24

От —90 до +125

1,6

35

КМТ-10

100—3300

³36

0—125

 

 

КМТ-1 Оа

100—3300

³36

0-125

1

75

КМТ-11

100—3300

³36

0—125

0,8

10

СТ4-2

2,1—3,0

34,7—36,3

36,3—41,2

От —60 до +125

36

 

СТ4-15

1,5-1,8

23,5—26,5

29,3—32,6

От -60 до +180

36

КМТ-17 (а, б)

0,33—22

36—60

От —60 до +155

2

30

КМТ-17в

0,33—22

36—60

От —60 до +100

2

30

СТ1-17

0,33—22

36—60

От —60 до +100

2

30

СТЗ-17

0,033—0,33

25,8—38,6

От —60 до +100

3

30

СТ4-17

1,5—2,2

32,6—36

От —80 до +100

2

30

КМТ-14

0,51—7500

41—70

От —10 до +300

0,8

60

СТЗ-14

1,5-2,2

26—33

27,5—36

От —60 до +125

1,1

4

СТ1-18

1,5—2200

40,5—90

От —60 до +300

0,2

1

СТЗ-18

0,68—3.3

22,5—32,5

От —90 до +125

0,18

1

СТ1-19

3,3—2200

42,3—72

От -60 до +300

0,6

3

СТЗ-19

2,2—15

29, 38, 5

От —90 до +125

0,5

3

СТЗ-25

3,3—4,5

26—32

От —100 до+125

0,08

0,4


КМТ-14, СТ1-18, СТ1-19, номинальные сопротивления которых нормируются для температуры 150° С. В графе «постоянная В» для некоторых типов ПТР приводятся два диапазона возможных значений В, первая строчка при этом относится к низким температурам, а вторая — к высоким. Перелом характеристики для ПТР типа СТЗ-6 происходит при — 28° С, для СТ4-2 и СТ4-15 — при 0° С и Для СТЗ-14— при 5° С.

Точность измерения температуры с помощью ПТР может быть весьма высокой. В настоящее время разработаны также ПТР для измерений низких и высоких температур. В частности, ПТР типа СТ7-1 может измерять температуру в диапазоне от — 110 до — 196° С. Высокотемпературный ПТР типа СТ12-1 предназначен для применения при температурах 600-1000° С.

Недостатками полупроводниковых терморезисторов, существенно снижающими их эксплуатационные качества, являются нелинейность зависимости сопротивления от температуры (см. рис. 14-12) и значительный разброс от образца к образцу как номинального значения сопротивления, так и постоянной В. Согласно ГОСТ 10688—63 допуск на величину номинального сопротивления может составлять ±20%. Допуск на величину постоянной В не нормируется. Практически он достигает ± 17% от номинального.

Нелинейность характеристики и технологический разброс параметров терморезисторов затрудняет получение линейных шкал термометров, построение многоканальных приборов, обеспечение взаимозаменяемости терморезисторов, необходимой при массовом производстве термометров с терморезисторами. Чтобы улучшить вид шкалы и обеспечить взаимозаменяемость терморезисторов, приходится применять специальные унифицирующие и линеаризующие цепи, как пассивные, так и активные.

Позисторы изготавливаются также из полупроводниковых материалов, но имеют положительный температурный коэффициент сопротивления. Для температурных зависимостей сопротивления позисторов характерно увеличение сопротивления при повышении температуры в определенном интервале температур. Ниже и выше этого интервала сопротивление с ростом температуры уменьшается. Положительные ТКС позисторов могут достигать величины порядка 30—50 проц/К, графики изменения их сопротивления в зависимости от температуры приведены на рис. 9.

Возможно также создание других видов полупроводниковых Датчиков температуры. В частности, для измерения температуры Можно применять датчики из органических полупроводников и Датчики на основе открытых или запертых р — n-переходов. Например, при заданном токе напряжение на открытом р — п-переходе или на стабилитроне линейно изменяется с температурой, чричем ТКС для открытого р — n-перехода отрицателен и составляет 2—3 мВ/К, а для стабилитрона положителен и достигает 8 мВ/К.

Измерительные цепи. Отличия измерительных цепей для терморезисторов от обычных цепей омметров заключаются в более узком диапазоне изменения измеряемого сопротивления и в необходимости учета сопротивлений проводов, соединяющих термометр сопротивления с измерительной цепью. Если используется простейшая двухпроводная соединительная линия, то может возникнуть погрешность от температурного изменения сопротивления этой линии. При применении высокоомных термометров (например, полупроводниковых) эта погрешность может быть пренебрежимо мала, однако в большинстве практических случаев, когда используются стандартные термометры сопротивления, ее приходится принимать во вни­мание.

Если, например, сопротивление медной линии равно 5 Ом и используется термометр с Ro = 53 Ом, то изменение температуры линии на 10° С приведет к изменению показаний прибора примерно на ГС. Для уменьшения погрешности от изменения сопротивления соедини­тельной линии часто применяют трехпроводную линию. При этом термометр подключают к мостовой цепи так, чтобы два провода линии вошли в разные плечи моста, а третий оказался подключен­ным последовательно с источником питания или указателем. На  рис. 10, а показана схема моста, содержащего термометр сопротивления, присоединенный трехпроводной линией.

Исключить влияние сопротивлений соединительной линии можно, используя четырехпроводное включение терморезистора, как это показано на рис. 10 а, б, и вольтметр с большим входным сопротивлением для измерения падения напряжения UΘ = IR на терморезисторе. Ток через терморезистор должен быть задан, поэтому "и такой схеме включения терморезистор питают от стабилизатора тока. Возможно также построение мостовых цепей с четырехпроводным подключением термометра.

1.4. ПРОМЫШЛЕННЫЕ ТЕРМОПАРЫ И ТЕРМОРЕЗИСТОРЫ

Основные параметры термопар промышленного типа:

Таблица 5

Обозначение термопары

Обазначение градуировкит

Материалы
термоэлектродов

Пределы измерения при длительном применении, °СС

Верхний предел измерения при кратковременном применении, °С

от

до

ТПП

ПП-1

Платинородий (10% родия)— платина

—20

1300

1600

ТПР

ПР-30/6

Платинородий (30% родия)— платинородий (6% родия)

300

1600

1800

ТХА

ХА

Хромель — алюмель

—50

1000

1300

ТХК

ХК

Хромель — копель

—50

600

800

Для измерения температур ниже — 50° С могут найти применение специальные термопары, например медь — константан (до ~- 270° С), медь — копель (до — 200° С) и т. д. Для измерения тем­ператур выше 1300—1800° С изготавливаются термопары на основе тугоплавких  металлов: иридий—ренийиридий (до 2100° С), вольфрам—рений (до 2500° С), на основе карбидов переходных металлов — титана, циркония, ниобия, талия, гафния (теоретически до 3000—3500° С), на основе углеродистых и графитовых волокон.

Градуировочные характеристики термопар основных типов приведены в табл. 6. В этой таблице указана температура рабочего спая Θ в градусах Цельсия и приведены величины термо-э.д.с. соответствующих термопар в милливольтах при температуре свободных концов 0° С.

Таблица 6

Обозначение градуировки

Температура рабочего спая в, °С

 

-50

—20

Страницы: 1, 2, 3


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.