рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Общая Физика (лекции по физике за II семестр СПбГЭТУ "ЛЭТИ")


 

15. Потенциал (j):

]$ поле, создаваемое неподвижным точечным зарядом q. ]$ точечный заряд q’, на который действует сила:

F = 1/(4pe0)*(qq’)/r2

Работа, совершаемая над зарядом q’ при перемещении его из одной точки в другую, не зависит от пути

A12 = 1ò2 F(r)dr = (qq’)/(4pe0)r1òr2dr/r2.

Иначе ее можно представить, как убыль потенциальной энергии:

A12 = Wp1 – Wp2.

При сопоставлении формул получаем, что Wp = 1/(4pe0)*(qq’)/r.

Для исследования поля воспользуемся двумя пробными зарядами qПР’ и qПР’’. Очевидно, что в одной и той же точке заряды будут обладать разной энергией Wp’ и Wp’’, но соотношение Wp/qПР будет одинаковым.

j = Wp/qПР = 1/(4pe0)*q/r  называется потенциалом поля в данной точке и, как напряженность, используется для описания электрического поля.

]$ поле, создаваемое системой из N точечных зарядов. Работа, совершаемая силами этого поля над зарядом q’, будет равна алгебраической сумме работ, совершаемых каждым из qN над q’ в отдельности:

A = i = 1åNAi, где Ai =                        = 1/(4pe0)*(qiq’/ri1 - qiq’/ri2), где ri1 -  расстояние от заряда qi до начального положения заряда q’, а  ri2 – расстояние от qi до конечного положения заряда q’.

Следовательно Wp заряда q’ в поле системы зарядов равна:

Wp = 1/(4pe0)*i = 1åN(qiq’)/ri , то

j = 1/(4pe0)*i = 1åN(qi/ri), следовательно потенциал поля, создаваемого системой зарядов, равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности.

Заряд q, находящийся в точке с потенциалом j обладает энергией

Wp = qj, то работа сил поля

A12 = Wp1 –Wp2 = q(j1 - j2).

Если заряд из точки с потенциалом j удалять в бесконечность, то          A¥ = qj, то j численно равен работе, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки на бесконечность.







16. Связь между напряженностью и потенциалом:

Электрическое поле можно описать с помощью векторной величины Е и скалярной величины j.

Для заряженной величины, находящейся в электрическом поле:

F = qE, Wp = qj.

Можно написать, что

E = - ¶j/¶x - ¶j/¶y - ¶j/¶z, т.е. при проекции на оси:

Ex = -¶j/¶x, Ey = -¶j/¶y, EZ = -¶j/¶z, аналогично проекция вектора Е на произвольное направление l: Еl =          = -¶j/¶l, т.е. скорости убывания потенциала при перемещении вдоль направления l.

j = 1/(4pe0)*q/r = /в трехмерном пространстве/ = 1/(4pe0)*q/Ö(x2+y2+z2).

Частные производные этих функций равны:

¶j/¶x = -q/(4pe0)*x/r3;

¶j/¶y = -q/(4pe0)*y/r3;

¶j/¶z = -q/(4pe0)*z/r3.

При подстановке получаем:

E = 1/(4pe0)*q/r2.

Работа, по перемещению q из точки 1 в точку 2, может быть вычислена, как A12 = 1ò2qEdl или A12 = q(j1 - j2), приравняв их, получим j1 - j2 = 1ò2Edl. При обходе по замкнутому контуру j1 = j2, то получим:             oò Edl = 0.



17. Эквипотенциальные поверхности:

Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной. Ее уравнение имеет вид j(x, y, z) = const.

При перемещении по эквипотенциальной поверхности на отрезок dl, dj = 0. Следовательно, касательная к поверхности, составляющая вектор Е, равна 0, т.е. вектор Е направлен по нормали к эквипотенциальной поверхности. Т.е. линии напряженности в каждой точке перпендикулярны к эквипотенциальным поверхностям.

Эквипотенциальную поверхность можно провести через любую точку поля и их можно построить бесконечное множество. Их проводят таким образом, чтобы разность потенциалов для двух соседних поверхностей была одинаковой (Dj = const). Тогда по густоте эквипотенциальных поверхностей можно судить о величине напряженности поля.

В соответствии с характером зависимости Е от r, эквипотенциальные поверхности при приближении к заряду становятся гуще. Для однородного поля эквипотенциальные поверхности представляют собой систему равноотстоящих друг от друга плоскостей, перпендикулярных к направлению поля.








18. Проводники в электрическом поле:

Проводники состоят из связанных зарядов равномерно распределенных по объему проводника. Электроны проводника находятся в тепловом хаотическом движении.

]$ поле с проводником:


                          () 1

           -        +                                    Е

 -                     +

       -                       +                         Е

     -                          +() 2  

   -                           +                         Е

   -                             +    

   --                          +                        Е

    -                           +

                          +                              Е

          -    +


Напряженность внутри проводника равна 0, т.к. внутри проводника складывается некая суперпозиция напряженностей.

Если j1 - j2 = 0, то поверхность проводника эквипотенциальна, а линии напряженности всегда перпендикулярны эквипотенциальной поверхности.

Возьмем произвольную точку плоскости проводника.


 


                                   t



                 j


Возьмем касательную к элементу поверхности t.

dj/dt = -Et, (где dj/dt = 0) вектор Е перпендикулярен плоскости в данной точке.

                                q

      

            Е = 0 

                    E ~ g

(g - поверхностная плотность)     

Заряд распределен по поверхности, Е = 0, распределение неравномерно, максимальную плотность заряд имеет в местах максимальной кривизны.

Обозначим «степень кривизны» за С, то С = 1/R.

E ~ g ~ C ~ 1/R.




















19. Электроемкость, конденсаторы:

Электроемкость – коэффициент пропорциональности между зарядом проводника и потенциалом, который заряд приобретает. Зависит от формы проводника и окружающих его тел.

С = q/j.

Электроемкости уединенных проводников (на него ни что не влияет):

Сфера:      q


                                   j = 1/(4pe0)*q/R

                                   C = q/j = 4pe0R

      R                  j 



Если поместить около сферы другой проводник, то С = Dq/Dj.

-Dq

R

                                                         Dq 

                           E+


 X                                  E-

 


                                                      +Dq 

                                             l   

                                                       R

                                                    


Dj - разность потенциалов, возникшая между проводниками.

Если l>>R, то заряд по поверхности каждой сферы распределяется равномерно.

Dj = j1 - j2

j1 - j2 = Ròl-R Edx

E = E+ + E- = k*Dq/x2 + k*Dq/(l-x)2


Конденсаторы:

С = 4pe0R

Плоский:


 q+                q-    C = Dq/(j1 - j2) =

                             = (Dqe0S)/(Dqd)  =

                             = e0S/d

                             j1 - j2 = E*d =

                             = gd/e = (Dqd)/(e0S)






 j1                j2


Сферический:


              

                  R1

                        R2

          +q  


        -q

j1 - j2 = R1òR2E+dr =                           = Dq/(4pe0) * R1òR2 (1/r2)dr =                    = Dq/(4pe0)*(1/R1 – 1/R2).

C = (4pe0eR1R2)/(R2-R1).






20. Электрическое поле в диэлектриках:

При помещении в поле диэлектрика в поле происходит изменение. Сам диэлектрик реагирует на поле иначе, чем проводник.

Заряды, входящие в состав молекул диэлектрика, называются связанными. Они не могут покидать пределы молекулы, в которую они входят.

Заряды не входящие как в состав молекул диэлектрика, так и в сам диэлектрик называются сторонними.

Поле в диэлектрике является суперпозицией полей сторонних и связанных зарядов и называется микроскопическим (или истинным).

ЕМИКРО = ЕСТОР + ЕСВЯЗ

Микроскопическое поле в пределах диэлектрика непостоянно, поэтому

Е0 = <ЕМИКРО> = <ЕСТОР> + <ЕСВЯЗ>

<ЕСВЯЗ> = E’

Макроскопическое поле:

E = E0 + E’

При отсутствии диэлектрика макроскопическое поле равно

Е = Е0 = <ЕСТОР>.

Если сторонние заряды неподвижны, то поле ЕМИКРО обладает теми же свойствами, как электростатическое поле в вакууме.

При определении суммарного действия всех электронов имеет значение и центр масс  отрицательных зарядов.

                                      ®

                  q-                  l                 q+

 



          ®                            ® 

r-                                     r+




  ®                        ®

 r- = (i = 1åNriqi-)/( i = 1åNqi-)

®

r+ = (j = 1åNrjqj+)/( j = 1åNqj+)

Полярные и неполярные молекулы во внешнем поле приводят развороту диполя в направлении поля. Неполярные молекулы приобретают электрический момент. Они поляризуются, от чего возникает дипольный момент, направленный вдоль внешнего поля. Молекула ведет себя как упругий диполь.






















21. Диполь в однородном и неоднородном электрических полях:

В однородном поле:

®

 
                                             ® 

                                              E

                 l             +q

                                     Fk

     ®

     M       a

Fk  (X)-q



M = Fk*l*sina = q*E*l*sina =              = P*E*sina, где P – дипольный момент.

®    ®   ®                   

M = [P x E]

®

M – направлен «от нас»

dA = Mda = P*E*sina da

dA = dW                ®   ®

W = -P E cosa = -(P E)*

* - cкалярное произведение.

В неоднородном поле:


                                       ®             ®   

X

 
                        +q           F+             Е

                 l

              -q     DX

  ®      

  F-


DF = (F+) – (F-) = q*DE =                   = q*¶E/¶X*l*cosa = P*¶E/¶X*cosa =       = /кроме вращающего момента на диполь действует сила, зависящая от угла a, если угол острый, то диполь «втягивается» внутрь поля/ =              = ¶(PEcosa)/¶X = -¶W/¶X.






































22. Поляризация диэлектриков:

®

Р – параметр, описывающий состояние диэлектрика в электрическом поле.

®            ®     

P = (i = 1åNPi)/DV


 


(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

             (-+)(-+)        (-+)(-+)                ®

         (-+)(-+)       (-+)(-+)                 Е

(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

На поверхности возникают связанные заряды с плотностью gСВЯЗ.

®        ®  

P = He0E

H – коэффициент диэлектрической восприимчивости;

Е – результирующий вектор.

 



                                                    E



        DS                 l

                          ®                         n

                     P


  n

                       d


               

            -g                 +g

P*DV – суммарный дипольный момент молекул внутри цилиндра.

DV = DS*l*cosa

P*DV = P*DS*l*cosa = q*l

q = gСВЯЗ*DS

P*DS*cosa*l = gСВЯЗ*DS*l

P*cosa = gСВЯЗ

gСВЯЗ = He0E, где Е – результирующее поле в диэлектрике.

®  ®    ®

Е = Е0 + Е’

Внешнее поле должно ослабляться:

®      ®  ®      ®         ®             

Д = e0Е + Р = e0E + He0E =

                  ®        ®  

= (1 + H)e0E = ee0E.






















23. Поле внутри плоской диэлектрической пластины:

  

    +g0                                 -g0

                                         

                                       Е0

               -              +   

 



               -              +                     

                                            

                                       

               -              +  

   


g0 – свободные перемещающиеся заряды, создающие Е0 (вектор);

Число силовых линий уменьшается во столько раз, какое значение имеет e.

Е0 = g0/e0

Е = Е0 – Е’ = g0/e0 - gСВЯЗ/e0 =             = 1/e0(g0 - gСВЯЗ);

E = E0 – HE ® E*(1 +H) = E0 ®       E = E0/(1+H) = E0/e;

Д = e0eE = e0E, т.е. вектор индукции внутри не изменяется, плотность силовых линий остается постоянной.

E = 1/e0*(g0 - gСВЯЗ) = E0/e =g0/(e0e);

gCВЯЗ = g0*(e - 1)/e.















































25. Сегнетоэлектрики:

Существуют группы веществ, которые могут обладать самопроизвольной поляризованностью в отсутствие внешнего поля. Подобные вещества получили название сегнетоэлектриков.

Впервые свойства сегнетоэлектриков было изучено Курчатовым.

Отличия сегнетоэлектриков от остальных диэлектриков:

1) Диэлектрическая проницаемость сегнетоэлектриков измеряется тысячами, а у диэлектриков – десятками.

2) Диэлектрическая проницаемость сегнетоэлектриков зависит от напряженности поля.

3) Сегнетоэлектрики обладают явлением гистерезиса (запаздывания):

    

                               P




                             1    

Pr            2               3       


                                                             E

 





                      EC

При изменении поля значение поляризованности Р и смещения D отстают от напряженности поля Е, в результате чего P и D зависят не только от текущего значения Е, но и от проедшествующего. Это явление называется гистерезисом.

На участке (2), при обращении Е в ноль, сохраняется остаточная поляризованность Pr. Она становится равной нулю только под действием противоположнонаправленного поля ЕС, называемой коэрцетивной силой.

Сегнетоэлектриками могут быть только кристаллические вещества с отсутствующим центром симметрии.

У каждого сегнетоэлектрика $ темпиратура, называемая точкой Кюри, при которой он утрачивает свои свойства и становиться обычным диэлектриком.






















26. Поведение векторов напряженности и индукции на границе двух сред:

                   Et1

e1

                                   ®    

                ®               n1

                En1   a1

                                                        dh

Et2

             a2    ®          ®          

                           En2        n2   


e2


Выделим на границе сред тонкую «шайюбу» толщиной dh ® 0 и площадью S. Подсчитаем поток индукции Д через выделенный объем.

Дn2*S*cos0o + Дn1*S*cos180o + ФБОК = 0, где Ф = 0, т.к. dh ® 0;

Дn2*S - Дn1*S = 0 ® Дn2 = Дn1 ®     ® e0e2En2 = e0e1En1 ® En2/En1 = e1/e2.

Дn – неприрывна, а Еn терпит разрыв.                                                ®

Рассмотрим циркуляцию вектора Е по контуру на границе раздела с        dh ® 0:

                                          ®  

               ®                       E1t

               E1



Et2                            l   

              Et1 

E2

                                     ®      

                                     E2t

E1t l cos0o + E2t l cos180o +              + EБОК dh cos90o = 0;

Et1 = Et2; Дt1/(e0e1) = Дt2/(e0e2) ® ® Дt1/ Дt2  = e1/e2 (Е1 и Д1 сонаправленны, как и Е2 и Д2);

tga1/tga2 = (Et1/ En1)*(En2/Et2) =      = En2/En1 = e1/e2.





























27. Энергия электрического плоля:

Плотность энергии – энергия, приходящаяся на единицу объема поля.

w = W/V – в однородном поле;

w = dW/dV -  в неоднородном поле.

[w] = Дж/м3;

Определим w в поле плоского конденсатора:

W = CU2/2 = (e0eSU2)/(2d), где        U – разность потенциалов на обкладках конденсатора;

d – расстояние между обкладками;

V = S*d;

w = W/V =(e0eSU2)/(2d*Sd) =            = (e0eU2)/(2d2);

U/d = E;

w = (e0eE2)/2 = EД/2 = Д2/(2e0e)

В сегнетоэлектриках w = 1/2 S петли гистерезиса.

Очевидно, что w характеризует поле в конкретной точке, как Е и Д.

W = VòwdV – энергия поля.

Энергия взаимодействия двух точечных зарядов:

W = q1*j2 = (q1q2)/(4pe0er) – энергия взаимодействия, она делится поровну между зарядами.

Энергия одного заряда:

Wi = 1/2 qiji;

Энергия поля из N зарядов:

W = 1/2 i=1åNqiji, при этом i ³ 2.



28. Классическая теория электропроводности металлов:

Существует предположение, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движуться совершенно свободно, пробегая в среднем некоторый путь l. Но в отличии от газа, электроны в металле сталкиваются приемущественно не сами с собой, а с ионами, образующими кристаллическую решетку металла.

Оценку средней скорости теплового движения электронов можно произвести по формуле:

<u> = Ö(8kT)/(pm), для комнатной темпиратуры <u> » 105 м/с.

При включении поля на хаотическое тепловое движение, происходящее с <u>, накладывается упорядоченное движение электронов с <u>:

j = ne<u>, где j – плотность тока; для меди <u> » 10-3 м/с.

Вызываемое полем изменение среднего значения кинетической энергии электронов.

<(u + u)2> = <u2 + 2uu + u2> =         = <u2> + 2<uu> + <u2> Û

Û <(u + u)2> = <u2> + <u2>, значит упорядоченное движение увеличивает кинетическую энергию  в среднем на <Dek> = (m<u2>)/2.










29. Природа носителей зарядов металла:

В результате проведения ряда опытов /трамвайная линия/ было доказано, что заря в металлах переносится не атомами, а другими частицами, предположительно электронами. Если это так, то при резком торможении частицы должны продолжить свое движение и перенести некоторый заряд.

] проводник движется со скоростью v0 и резко затормаживается с ускорением w. Продолжая двигаться по инерции, носители приобретут ускорение –w. Такое же ускорение можно создать, подействовав на проводник электрическим полем с E = -mw/e’, т.е. приложив к концам проводника разность потенциалов:

j1 - j2 = 1ò2Edl = -1ò2(mw)/e’dl =       = -mwl/e’, где l – длина проводника. В этом случае по проводнику потечет ток I = (j1 - j2)/R.

Таким образом за время торможения прошел заряд

q = òdq = -u0ò0ml/(e’R)du =                = (m/e’)*(lu0/R), заряд положителен, если он переносится в направлении движения проводника.

Существование в металлах свободных электронов можно объяснить тем, что при образовании кристаллической решетки, от атомов отщепляются слабее всего связанные электроны.



30. Закон Видемана – Франца:

Известно, что металлы обладают как высокой электропроводностью, так и большой теплопроводностью. Видеман и Франц в 1853 году установили, что отношение коэффициента теплопроводности Н к коэффициенту электропроводности s для всех металлов примерно одинаковое и изменяется пропорционально абсолютной темпиратуре. Тот факт, что теплопроводность металлов значительно превышает теплопроводность диэлектриков говорит о том, что и теплопроводность  в металлах осуществляется с помощью свободных электронов.

Рассматривая электроны как одноатомный газ получим:

H = 1/3 nmulCV, где СV = 3/2 (k/m), то H = 1/2 nkul.

Таким образом

H/s = (kmu2)/e2 = 3(k/e)2T =             = 2,23*10 ¾ 8*T.














31. Постоянный электрический ток, его плотность и ЭДС:

Если через некоторую поверхность переносится суммарный заряд, отличный от нуля, то говорят, что через эту поверхность течет электрический ток. Ток может течь в тветдых телах (металлы, полупроводники), в жидкостях (электролиты) и газах (называется газовым разрядом).

Для протекания тока необходимо наличие заряженных частиц, которые могут перемещаться в пределах всего тела, называемых носителями тока. Ими могут быть электроны, ионы или макроскопические частицы, несущие на себе избыточный заряд.

Ток возникает при условии, что внутри тела $ эл. поле. Носители заряда принимают участие в молекулярном тепловом движении и движуться с некой v и в отсутствии заряда, но т.к. движение хаотическое, то ток = 0. При появлении поля на хаотическое v накладывается упорядоченное u. Т.о. u = v + u, но т.к. <v> = 0, то <u> = <u>.

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.