рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Приёмники электрической энергии промышленных предприятий

Требуемая мощность трансформатора определяется из выражения:


 [2]


где Sсм – средняя нагрузка цеха за наиболее загруженную смену, кВА;

N – число трансформаторов;

Kзагр – коэффициент загрузки.

В среднем для двух трансформаторной подстанции для расчетов Кзагр=0,7. Это удовлетворяет условиям ПУЭ по перегрузки для масляных трансформаторов.


 [2]


Для I категории Кзагр≤0,7; Для II категории Кзагр≤0,85 [2].

Мощность трансформатора выбирается ближайшая большая или принимается равной 2 (4; 6) и так далее, так чтобы равномерно распределить подстанции по цеху и рассматривают вопрос разукрупнения трансформаторов по цеху. Для цехов с расчетной нагрузкой до 400 кВА как правило отдельные ПС не предусматривают. При небольшой нагрузке такие цеха объединяют по территориальному признаку и запитывают от общей раздельной ЦТП, при этом ПС должны удовлетворять высшей категории надежности ЭСН. Возможно объединение мелких цехов с крупными, ПС в этом случае размещают в крупных цехах.

При проектировании СЭС место расположения ПС выбирают по направлению потока энергии от ГПП к ЦТП, то есть по возможности избегают перетоков. При проектировании производят экономическое сравнение вариантов. Укрупнение ПС приводит к сокращению кабельных линий и количества трансформаторов, но в тоже время у трансформаторов большей мощности больше потери и они более сложны в обслуживании.

При выборе трансформаторов цеховых ПС можно предусмотреть резерв на расширение или замену оборудования на более мощное.

В данной главе будет произведен расчет и выбор силовых трансформаторов ПС 16, щита кранов и щита освещения, расположенных в ПС 16.


4.1 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА ПС 16 10/0,4кВ



Выбираем трансформатор ТМ – 1600кВА

В аварийном режиме при отключении одного трансформатора второй трансформатор будет работать со следующей перегрузкой:



Для масленых трансформаторов в послеаварийном режиме допускается перегрузка на 40% в течение 6 часов, 5 суток подряд [2], т.е. данный трансформатор работающий в послеаварийном режиме с коэффициентом загрузки 1,3 удовлетворяет необходимые требования.


4.2 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА ЩИТА КРАНОВ 0,38/0,23кВ



Выбираем трансформатор ТСЗ – 250кВА


4.3 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА ЩИТА ОСВЕЩЕНИЯ 0,38/0,23кВ



Выбираем трансформатор ТСЗ – 63кВА


5. Расчет токов трехфазного короткого замыкания


Коротким замыканием называют всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы электрическое соединение различных точек электроустановки между собой или с землей, при котором токи резко возрастают, превышая наибольший допустимый ток продолжительного режима.

Короткое замыкание является наиболее тяжелым видом повреждений для сетей электроснабжения. Причинами коротких замыканий могут быть: механические повреждения изоляции, поломка фарфоровых изоляторов, падение опор воздушных линий, старение изоляции, увлажнение изоляции, перекрытие фаз животными и птицами и другие. Короткое замыкание может возникнуть при неправильных оперативных переключениях, например при отключении нагруженной линии разъединителем, когда возникающая дуга перекрывает изоляцию между фазами. Последствиями короткого замыкания являются резкое увеличение тока в короткозамкнутой цепи и снижение напряжения в отдельных точках системы.

Возникают следующие виды короткого замыкания:

1.                 Трехфазное междуфазное

2.                 Трехфазное на землю

3.                 Однофазное

Расчет токов короткого замыкания выполняется:

1.                 Для проверки частей аппаратов на термическую стойкость.

2.                 Для проверки частей аппаратов на электродинамическую стойкость, при сквозных коротких замыканиях.

3.                 Для выбора уставок релейной защиты и автоматики.

Метод определения токов короткого замыкания зависит от типа источника питания и его удаленности. Расчеты выполняются с использованием ряда допущений в литературе [8].

Короткое замыкание рассматривается как переходный процесс, в течение которого ток изменяется от значений соответствующих для нормального режима до значений соответствующих новому установившемуся режиму короткого замыкания.

Для проверки на электродинамическую стойкость определяют ударный ток.

Ударный ток – это наибольшее из всех мгновенных значений токов короткого замыкания.

Ударные коэффициенты приводятся в справочных таблицах литературы [1], [2], [3].

На расчетной схеме (рис.1) указываются только те элементы, которые включены в цепь короткого замыкания. На основании расчетной схемы составляется схема замещения, в которой все элементы должны быть представлены соответствующими параметрами, рассчитываем аналитическим методом. Рассчитать токи 3-х фазного короткого замыкания на шинах 0,4кВ, кабельных линий 10кВ, 0,4кВ, 0,23кВ.

Данные: SБ=100 МВА; SКЗ= 100МВА Рассчитаем параметры схемы замещения, для этого задаемся

Sб = 100МВА


Х*с = = = 1 о.с. [8]


Таблица 2 «Сопротивление трехжильных кабелей». [16]

Кабельная линия KL

Индуктивное сопротивление Хо (Ом/км)

Активное сопротивление Rо (Ом/км)

Длинна l (км)

KL1

0,083

0,329

0,147

KL2

0,06

0,261

0,229

KL3

0,06

0,261

0,015

KL4

0,06

0,447

0,016

Определяем индуктивное сопротивление кабеля Х*КL1, KL2, KL3, KL4 [8]:



Определяем активное сопротивление кабеля R*КL1, KL2, KL3, KL4 [8]:



Таблица 3 «Значения ХТ и UК трансформаторов». [16]

Мощность тр-ра (МВА)

Индуктивное сопротивление Хт

UК (%)

1,6

4,06

6,5

0,25

18

4,5

0,063

71,2

4,5


Определяем индуктивное сопротивление трансформатора ХТ [8]:


Определяем индуктивное сопротивление трансформатора ХТ1 [8]:



Определяем индуктивное сопротивление трансформатора ХТ2 [8]:



Определяем ток короткого замыкания в точке К1 [8]:


;

.


Ударный ток в точке К1 [8]:


.


Определяем ток короткого замыкания в точке К2 [8]:


;

.


Ударный ток в точке К2 [8]:


.


Определяем ток короткого замыкания в точке К3 [8]:


;

.


Ударный ток в точке К3 [8]:


.


Определяем ток короткого замыкания в точке К4 [8]:


=

;

.

Ударный ток в точке К4 [8]:


.


Определяем ток короткого замыкания в точке К5 [8]:


;

.


Ударный ток в точке К5 [8]:


.


Определяем ток короткого замыкания в точке К6 [8]:


;

.


Ударный ток в точке К6 [8]:



Определяем ток короткого замыкания в точке К7 [8]:


;

.


Ударный ток в точке К7 [8]:


Таблица 4 «Значения токов КЗ в точках К1 – К7»

Точки КЗ

IКЗ (кА)

IУД (кА)

К1

5,6

0,08

К2

27,4

61,9

К3

3,6

8,1

К4

23

52

К5

19,9

45

К6

10

22,6

К7

3,2

7,2


6. Расчет и выбор кабеля 10кВ


При проектировании внутризаводских сетей расчет линий сводится к выбору марки и сечения кабеля.

Марку кабеля выбирают по рекомендациям литературы [9]. Сечение выбирают из четырех условий:

1)     По длительно допустимому нагреву Iр max [9]


Iдл. доп.³Iр max [9]

, А [9]

, кВА [9]


2)     По экономической плотности:


 , мм2 [9]


где:

 - расчетный ток в нормальном режиме, А;

 - экономическая плотность тока определяется по справочным таблицам в зависимости от типа проводника и числа часов использования максимальной активной нагрузки в год (А/мм2). Число часов использования максимальной активной нагрузки по Тм приводится в литературе [16].

3)     По допустимой потере напряжения


 [1]

 [1]

 [9]


где:

Pp и Qp – мощности передаваемые по линии в кВт и кВар (табл.1);

Uср ном – средне-номинальное напряжение сети;

R=ro*l – активное сопротивление;

X=xo*l – индуктивное сопротивление;

ro, xo - удельное сопротивление кабелей из литературы [3];

l – длина линии, в км.

4)     Проверка на термическую стойкость КЗ[9]:


 [9]


где: Bк – тепловой импульс, А·с


 [9]


где  - действующее значение периодической составляющей тока трехфазного КЗ в начале и конце линии (табл.4);

 - приведенное или расчетное время КЗ складывается из времени релейной защиты и собственного времени отключения;

СТ – термический коэффициент, учитывающий разницы нагрева в нормальных условиях и в условиях КЗ, с учетом допустимой температуры и материала проводника, из литературы [16].

Четвертое условие можно проверить только после расчета токов КЗ.

Расчетная часть:

Выбираем марку кабеля: АПвП.

1) Выбираем сечение кабеля для ПС 16, Sтр = 1600кВА



Из таблицы 1.3.16 ПУЭ выбираем:


Iдл. доп.=170А; S=95мм2, Iдл. доп.³Iр max

 

2) Предприятие металлургическое с непрерывным режимом работы Тм= 7000 часов в год.


=1,6А/мм2; Iр= 92,3 А;


Оставляем сечение 95мм2


3) ro=0,329 Ом/км; xo=0,083 Ом/км (l=0,147км);


R=0,329 · 0,147=0,048 Ом; X=0,083 · 0,147=0,01 Ом;

4) СТ=95; tпривед=2+0,055=2,055 сек;

=8027,7

По всем условиям выбранный кабель подходит.

7. Выбор аппаратов защиты 0,4кВ


Для защиты распределительных линий и ЭП, подключенных к ним, используются автоматические выключатели типа ВА и АЕ и плавкие предохранители. Эти аппараты устанавливаются в силовых распределительных шкафах.

Шинопроводы позволяют установку автоматов. Автоматический выключатель имеет тепловой, электромагнитный и комбинированный расцепитель. При наличии теплового расцепителя автомат осуществляет защиту от перегрузки (увеличения тока). Электромагнитный расцепитель обеспечивает защиту от короткого замыкания. Комбинированные расцепители выполняют защиту линии и электроприёмников от перегрузки и от КЗ.


7.1 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ СБОРНЫХ ШИН ПС 16


Для выбора автоматического выключателя, защищающего секцию сборных шин от перегрузок и токов КЗ, исходим из следующих условий:


  [1],


где:

Uн.а. – номинальное напряжение автомата

Uсети – напряжение сети

Iн.а. – номинальный ток автомата

Iрасч – расчетный ток

Выбираем автоматический выключатель NA 1 - 4000, т.к.


Uн.а. ³ Uсети 400 ³ 380

Iн.а. ³ Iрасч. 4000 ³ 3327,3


Проверяем автомат на электродинамическую стойкость от действия ударных токов короткого замыкания:


Iуд<Iэл [1]

61,9кА < 80кА


Проверим автоматический выключатель на надежность срабатывания защиты в условиях однофазных КЗ:

Исходя из проверки видно, что автоматический выключатель удовлетворяет всем условиям.


7.2 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ ТРАНСФОРМАТОРА ЩИТА КРАНОВ

Согласно справочника номинальный ток автомата ВА5139 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий силовых трансформаторов ТСЗ250 выбираем автоматический выключатель ВА5139 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные


Uн.а. = 380В, Iн.а.= 400А, Iн.р.= 380А.


Проверяем автомат исходя из расчетных данных:


Uн.а. ≥ Uэл. сети, 380 В = 380 В

Iн.а. ≥ Iрасч. 400А > 379 А


Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.3 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ ТРАНСФОРМАТОРА ЩИТА ОСВЕЩЕНИЯ

Согласно справочника номинальный ток автомата ВА5133 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий силовых трансформаторов ТСЗ 63 выбираем автоматический выключатель ВА5133 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные

Uн.а. = 380В, Iн.а.= 160А, Iн.р= 95,7А.

Проверяем автомат исходя из расчетных данных:

Uн.а. ≥ Uэл.сети, 380 В = 380 В

Iн.а. ≥ Iрасч. 160А > 95,7 А

Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.4 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ СЕКЦИЙ ШИН ЩИТА КРАНОВ

Согласно справочника номинальный ток автомата ВА5139 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий секций шин щита кранов выбираем автоматический выключатель ВА5139 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные Uн.а. = 380В,

Iн.а.= 1000А, Iн.р.= 703,26А.

Проверяем автомат исходя из расчетных данных:

Uн.а. ≥ Uэл.сети, 380 В > 220 В

Iн.а. ≥ Iрасч. 1000А > 703,26А

Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.5 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ СЕКЦИЙ ШИН ЩИТА ОСВЕЩЕНИЯ

Согласно справочнику номинальный ток автомата ВА5735 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий секций шин щита освещения выбираем автоматический выключатель ВА5735 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные Uн.а. = 380В, Iн.а.= 250А, Iн.р.=162,41А.

Проверяем автомат исходя из расчетных данных:


Uн.а. ≥ Uэл.сети, 380 В > 220 В

Iн.а. ≥ Iрасч. 250А > 162,41А


Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.6 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ ДВИГАТЕЛЯ ВЫТЯЖНОЙ ВЕНТИЛЯЦИИ

Согласно справочнику номинальный ток автомата ВА5139 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий секций шин щита освещения выбираем автоматический выключатель ВА5139 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные Uн.а. = 380В, Iн.а.= 400А, Iн.р.= 303А.

Проверяем автомат исходя из расчетных данных:

Uн.а. ≥ Uэл.сети, 380 В ≥ 380 В

Iн.а. ≥ Iрасч. 400А > 303А

Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.7 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ ДВИГАТЕЛЯ ПРИТОЧНОЙ ВЕНТИЛЯЦИИ

Согласно справочнику номинальный ток автомата ВА5139 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий секций шин щита освещения выбираем автоматический выключатель ВА5139 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные Uн.а. = 380В, Iн.а.= 250А, Iн.р.= 152А.

Проверяем автомат исходя из расчетных данных:

Uн.а. ≥ Uэл.сети, 380 В ≥ 380 В

Iн.а. ≥ Iрасч. 250А > 152А

Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.

8. Расчет и выбор питающих линий 0,4кВ


Электрические сети 0,4 кВ являются наиболее распространенными, они применяются на всех промышленных и сельскохозяйственных предприятиях, электростанциях и подстанциях. От этих сетей во многом зависит надежная работа предприятий.

За последние годы техническая оснащенность сетей 0,4 кВ существенно изменилась. Получили распространение понижающие трансформаторы 6(10)/0,4 кВ большой мощности (1000, 1600, 2500 кВ, что привело к значительному увеличению значений токов короткого замыкания (КЗ). Созданы новые типы защитных аппаратов, способных отключать эти токи, а также ограничивать их максимальное значение, уменьшать их термическое и электродинамическое действие на защищаемые сети и аппаратуру. Для получения регулируемых защитных характеристик стали применяться выключатели с полупроводниковыми и цифровыми (микропроцессорными) разделителями. Наряду с этим совершенствуются расчетные методы выбора аппаратуры и защит.


8.1 РАСЧЕТ И ВЫБОР ПИТАЮЩЕГО КАБЕЛЯ К ТРАНСФОРМАТОРУ ЩИТА КРАНОВ


Расчет кабельных линий сводится к выбору марки и сечения кабеля. Марку кабеля выбирают по [9]. Сечение выбирают наибольшее из четырех расчетных условий.

 Условие выбора сечения по длительно-допустимому нагреву максимальным расчетным током имеют вид [1]:


 ,

где

Iдл.доп. – длительно допустимый ток

Iрасч.мах. – расчетный максимальный ток

Если в условиях эксплуатации ток в линии не превышает длительно-допустимого тока провода или кабеля, то гарантируется нормальный срок службы изоляции, и её сохранность от преждевременного теплового износа. Систематические превышения тока в линии над допустимыми значениями (токовые перегрузки) повышают вероятность нарушения электрической прочности изоляции за счёт старения. Длительно-допустимые токи приводятся в таблицах ПУЭ с учётом материалов токоведущих жил и изоляции. Длительно-допустимые токи устанавливаются по длительно-допустимой температуре нагрева токоведущих жил с учётом температуры окружающего воздуха (земли). Если провода и кабели работают в условиях повышенных температур окружающей среды или других условиях ухудшающих тепловой режим изоляции (плохая теплоотдача), то на длительно-допустимые токи вводят понижающие поправочные коэффициенты. В условиях пониженных температур поправочные коэффициенты больше единицы. Такие поправочные коэффициенты приводятся в ПУЭ.

 1. По условию длительно допустимого нагрева максимальным расчетным током:



По таблице 6.11 [9] выбираем 2 кабеля АВАШв 3x120 (кабель с алюминиевыми жилами с изоляцией из поливинилхлоридного пластика, с алюминиевой оболочкой, с защитным покровом типа Шв, с сечением жилы 120мм2) Далее, проверяем выбранный кабель по следующим условиям:

2. По экономической плотности тока [9]:


, мм2,


где Iр.ном. - расчетный ток в нормальном режиме, А.

γэк - экономическая плотность тока

Iр.ном.=Iр.мах./2=380/2=190 А

γэк. определяется в зависимости от типа проводника и числа часов использования максимальной активной нагрузки в год – Тм

Тм=7000час/год - по таблице 3.5 [16] γэк. = 1,6 А/мм2


 мм2


Исходя из этого выбираем жилы сечением 120мм2

3.По допустимой потере напряжения [9]:



где Pp и Qp – мощности передаваемые по линии в кВт и кВар (табл.1) ;

Uср ном – средне-номинальное напряжение сети;

R=ro·l – активное сопротивление;

X=xo·l – индуктивное сопротивление;

ro, xo - удельное сопротивление кабелей из литературы [9]

l – длина линии, в км.

ro=0,261/2 = 0,1305 Ом/км; xo=0,06/2 =0,03 Ом/км (l=0,015км);

R=0,1305 · 0,015=0,002 Ом; X=0,03 · 0,015=0,00045 Ом;

4. Проверка на термическую стойкость КЗ[9]:



где Bк – тепловой импульс, А с


Ст=95; tпривед=0,02 сек;

=3252,7


Окончательно выбираем кабель АВАШв 2(3x120)

8.2 РАСЧЕТ И ВЫБОР ПИТАЮЩЕГО КАБЕЛЯ К ТРАНСФОРМАТОРУ ЩИТА ОСВЕЩЕНИЯ

Расчет кабельных линий сводится к выбору марки и сечения кабеля. Марку кабеля выбирают по [9]. Сечение выбирают наибольшее из четырех расчетных условий.

 Условие выбора сечения по длительно-допустимому нагреву максимальным расчетным током имеют вид:


 ,


где

Iдл.доп. – длительно допустимый ток

Iрасч.мах. – расчетный максимальный ток

1. По условию длительно допустимого нагрева максимальным расчетным током:



По таблице 6.11 [9] выбираем кабель АВАШв 3x70 (кабель с алюминиевыми жилами с изоляцией из поливинилхлоридного пластика, с алюминиевой оболочкой, с защитным покровом типа Шв, с сечением жилы 70мм2)

Далее, проверяем выбранный кабель по следующим условиям:

Страницы: 1, 2, 3


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.