рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Проектирование тепловой электрической станции для обеспечения города с населением 190 тысяч жителей


Состав мазута по элементам:


Таблица 3.2

,ккал/кг

Wр, %

Ар, %

,%

СР,%

HР,%

NР+ОР, %

9260

3,0

0,1

2,8

83,0

10,4

0,7


3.2 Расчёт котлоагрегата при сжигании мазута


3.2.1 Теоретическое количество воздуха для полного сгорания жидкого топлива (при a=1):


V0=0,0889×(CP+0,375×)+0,265×HP-0,0333×OP=

=0,0889×(83,0+0,375×2,8)+0,265×10,4-0,0333×0,5×0,7= 10,21 м3/кг

3.2.2 Теоретические минимальные объёмы продуктов сгорания при полном сгорании топлива с a=1:

теоретический объём азота:


=0,79×V0+0,8×NP/100=0,79×10,2+0,8×0,5×0,7/100=8,1 м3/кг,


теоретический объём трёхатомных газов:


=1,866×=1,866×=1,57 м3/кг


теоретический объём водяных паров:


=0,111×HP+0,0124×WP+0,0161×V0=0,111×10,4+0,0124×3,0+0,0161×10,2=1,36 м3/кг


При избытке воздуха a>1 (принимаем a=1,03) объём водяных паров:


=+0,0161×(a-1)×V0=1,36+0,0161×(1,03-1)×10,2 = 1,364 м3/кг


объём дымовых газов:


Vг=+++(a-1)×V0=1,57+8,1+1,364+(1,03-1)×10,21= 11,34 м3/кг


Объёмные доли трёхатомных газов и водяных паров соответственно:


=/Vг =/Vг

 

Суммарная объёмная доля: rп=+.

Безразмерная концентрация золы:


mзл=, где аун=0,06

Gг=1-АР/100 + 1,306×a×V0, кг/кг


– масса дымовых газов.

Результаты расчётов по пункту 3.2. сведём в таблицу 3.3.


Таблица 3.3.

Величина

Размерн.

Газоходы



aт=1,03

aпп=1,06

aвэ=1,08

aрп=1,28

среднее знач.

a в газоходах

1,03

1,045

1,07

1,18

(a-1)×V0

м3/кг

0,306

0,459

0,714

1,836

м3/кг

1,364

1,367

1,371

1,39

м3/кг

11,34

11,496

11,755

12,896

0,138

0,136

0,133

0,122

0,12

0,119

0,116

0,106

rп

0,258

0,255

0,249

0,288

кг/кг

14,72

14,92

15,25

16,72

mзл

кг/кг

4,1×10-6

4,02×10-6

3,9×10-6

3,6×10-6


3.2.3 Тепловой баланс котлоагрегата

Составим общее уравнение теплового баланса:


=Q1+Q2+Q3+Q4+Q5+Q6

3.2.3.1 Располагаемое тепло на 1кг жидкого топлива:


=+Qв.вн.+iтл,


где Qв.вн. = b'['- ] – тепло внесённое в котёл воздухом,

b' – отношение количества воздуха на входе в котлоагрегат к теоретическому необходимому,

',  – энтальпии теоретически необходимого количества воздуха на входе в котлоагрегат и холодного воздуха, определяется соответственно по температуре на входе в воздухоподогреватель и холодного воздуха по I-t таблице [5].


b'=aт+Daт+DaВП=1,03-0,05+0,2=1,28

' =Ср×V0×tв=0,32×10,21×60=196 ккал/кг

= Ср×V0×tхв=0,32×10,21×30=98 ккал/кг

Qв.вн.=1,28×[196-98]= 115,6 ккал/кг


iтл – физическое тепло топлива.


iтл=Cтл×tтл

Cтл=0,415+0,0006×tтл=0,415+0,0006×120=0,487 ккал/(кг×0С)

iтл=0,487×120=58,44 ккал/кг,


тогда =9260+115,6+58,44= 9434 ккал/кг

 

3.2.3.2 Определяем потери тепла с уходящими газами:


q2=,


где tух=140 0С, Iух=637 ккал/кг, q4=0 (принято), aух=1,28,

тогда


q2== 5,42 %


потери тепла от химической неполноты сгорания принимаем q3=0,5 %, от механической неполноты сгорания q4=0 потери тепла в окружающую среду q5=0,4 %, потери тепла с физическим теплом шлама q6=0.

3.2.3.3. Определяем полезно используемое тепло:

q1=Q1/==100-q2-q3-q4-q5-q6=100-5,42-0,5-0-0,4-0=93,68 %


3.2.4 Определение часового расхода топлива на котёл


В=×100, кг/ч,


где


QКА=Дпе×(iпе-iпв)+Дпр×(is-iпв)=1000×(838,7-259)+12,6×(387-259)= =1312,8ккал/т,


тогда

В=×100 = 65775,9 кг/ч = 65,8 т/ч


Полученный расход топлива используем в дальнейших расчётах.


3.3 Расчёт котлоагрегата при сжигании газа


3.3.1 Теоретическое количество воздуха для полного сгорания газообразного топлива (при a=1):


V0=0,0476×[å(m+n/4)×CmHn+0,5×(CO+H2)+1,5×H2S-O2]=

=0,0476×[(1+4/4)×98,9+(2+6/4)×0,3+(3+8/4)×0,1+(4+10/4)×0,1+0,5×(0+0) +1,5×(0+0)]= 9,52 м3/кг


3.3.2 Теоретические минимальные объёмы продуктов сгорания при полном сгорании топлива с a=1:

теоретический объём азота:


=0,79×V0+0,01×N2=0,79×9,52+0,01×0,4= 7,525 м3/кг,


теоретический объём трёхатомных газов:


=0,01(åm×CmHn+CO2+CO+H2S)=0,01×(1×98,9+2×0,3+3×0,1+4×0,1 +0,2+0+0)= 1,004 м3/м3


теоретический объём водяных паров:


=0,01×(å× CmHn+H2S+H2+0,124×dг+1,41×V0)=

 =0,01×(2×98,9+3×0,3+4×0,1+5×0,1+0+0+0,124×10+1,61×9,52) = 2,16 м3/м3


При избытке воздуха a>1 (принимаем a=1,05):

объём водяных паров:


=+0,0161×(a-1)×V0=2,16+0,0161×(1,05-1)×9,52 = 2,168 м3/м3,


объём дымовых газов:


Vг=+++(a-1)×V0=1,004+7,525+2,16+(1,05-1)×9,52= 11,165 м3/м3,


Объёмные доли трёхатомных газов и водяных паров соответственно:


=/Vг =/Vг


Суммарная объёмная доля: rп=+.


Gг=1-АР/100 + 1,306×a×V0, кг/кг – масса дымовых газов.


Результаты расчётов по пункту 3.3. сведём в таблицу 3.4.


Таблица 3.4.

Величина

Размерн.

Газоходы



aт=1,05

aпп=1,08

aвэ=1,1

aрвп=1,3

среднее знач.

a в газоходах

1,05

1,065

1,095

1,2

(a-1)×V0

м3/м3

0,476

0,6188

0,904

1,904

м3/м3

2,168

2,17

2,174

2,191

м3/м3

11,165

11,308

11,593

12,593

0,09

0,0888

0,0866

0,0797

0,194

0,192

0,187

0,174

rп

0,284

0,2808

0,274

0,254


3.3.3 Тепловой баланс котлоагрегата

Составим общее уравнение теплового баланса:


=Q1+Q2+Q3+Q4+Q5+Q6

 

3.3.3.1 Располагаемое тепло на 1м3 газообразного топлива:


=+Qв.вн.+iтл,

 

где Qв.вн. = b'['- ] – тепло внесённое в котёл воздухом,

b' – отношение количества воздуха на входе в котлоагрегат к теоретическому необходимому,

', – энтальпии теоретически необходимого количества воздуха на входе в котлоагрегат и холодного воздуха, определяется соответственно по температуре на входе в воздухоподогреватель и холодного воздуха.


b'=aт+Daт+DaВП=1,05+0,05+0,2=1,3

' =Ср×V0×tв=1,28×9,52×30= 365 кДж/м3

= Ср×V0×tхв=1,28×9,52×15= 183 кДж/м3= 43,71 ккал/м3

Qв.вн.=1,3×[365-183]= 236,6 кДж/м3 = 56,5 ккал/м3

iтл»0 ккал/м3 (для газа) – физическое тепло топлива.


тогда =8570+56,5 = 8626,5 ккал/м3

 

3.3.3.2 Определяем потери тепла с уходящими газами:


q2=,


где tух=120 0С,


Iух=(×+×+×+(a-1)×V0×Cв)×tух=

=(1,004×1,708+7,525×1,302+1,39×1,5+1,904×1,304)×120=1929,62кДж/м3= =461 ккал/м3,


q4=0 (принято), aух=1,28 (см. п.4.2.2.),

тогда


q2== 4,69 %


Потери тепла от химической неполноты сгорания принимаем q3=0,5 %, от механической неполноты сгорания q4=0, потери тепла в окружающую среду q5=0,4 %, потери тепла с физическим теплом шлама q6=0.

3.2.3.3 Определяем полезно используемое тепло:


q1===100-q2-q3-q4-q5-q6=100-4,69-0,5-0-0,4-0= 94,41 %


3.2.4 Определение часового расхода топлива на котёл


В=×100, кг/ч,


где


QКА=Дпе×(iпе-iпв)+Дпр×(is-iпв)=1000×(838,7-259)+12,6×(387-259)= =581312,8ккал/т,


Тогда


В=×100 = 71376,5 м3/ч


Полученный расход топлива используем в дальнейших расчётах.


4. Выбор вспомогательного оборудования энергоблока


4.1 Выбор вспомогательного оборудования котельного отделения


На котёл паропроизводительностью более 500т/ч устанавливается два дымососа и два вентилятора. Также устанавливаются два вентилятора рециркуляции дымовых газов (ВРДГ) и исходя из того что температура уходящих газов tух=135°С топливо мазут принимаем к установке регенеративные воздухоподогреватели. Проектируемый котёл работает с уравновешенной тягой. При установке производительность каждого дымососа и вентилятора должна составлять 50%.

Расход воздуха перед вентиляторами и газов перед дымососами:



где – теоретические объёмы воздуха и продуктов сгорания;

Тхв,Тух – абсолютные температуры холодного воздуха и уходящих газов;

Производительность дымососов и вентиляторов выбираем с запасом 10%. Исходя из [10] рис.УП–30¸УП–38 определяем предварительно выбор тягодутьевых машин и затем по заводским характеристикам [11] выбираем их. Принимаем к установке дымососы и вентиляторы: 2´ДОД–31,5ФГМ с производительностью по 985000 м3/ч, напором 479 кгс/м2 мощностью эл. двигателя 1645 кВт. 2´ВДН–25–2–I с производительностью 500000м3/ч, напором 825 кгс/м2. 2´ГД–31 с производительностью по 345000 м3/ч, напором 410 кгс/м2 мощностью эл. двигателя 460 кВт. Регенеративные воздухоподогреватели 2´РВП–98Г.


4.2 Выбор вспомогательного оборудования турбинного отделения


Подогреватели поверхностного типа поставляются в комплекте с турбиной без резерва.

ПВД: ПНД:


ПВ–900–380–18–I ПН–400–26–2–III

ПВ–1200–380–43–I 3´ПН–400–26–7–II

ПВ–900–380–66–I ПН–400–26–7–I


Теплообменное оборудование комплектующее турбину Т–250/300‑240 следующее: дренажные сливные насосы регенеративных подогревателей устанавливаем без резерва с применением резервной линии каскадного слива дренажа в конденсатор. ПНД–2 (СлН)КС–50–55 с производительностью 50м3/ч, напором 55м и мощностью 17кВт. ПНД–3,4,5 КС–80–155 с производительностью 80 м3/ч, напором 155м и мощностью 75кВт.

Суммарная производительность деаэраторов питательной воды выбирается по максимальному её расходу. На каждый блок устанавливается один деаэратор. Запас питательной воды в баке деаэратора должен обеспечивать работу блока в течении не менее 3,5мин. К деаэраторам предусмотрен подвод резервного пара для удержания в нём давления при сбросах нагрузки и деаэрации воды при пусках.

Максимальный расход питательной воды:



где a,b – расход пит.воды на продувку, пар на собственные нужды котла в долях от паропроизводительности котла.

Минимальная полезная вместимость деаэраторного бака:



где J=3,5м3/т–удельный объём воды.

Выбираем деаэратор типа ДП–1000 с деаэраторным баком БДП–100 повышенного давления полезной ёмкостью 100 м3 с одной колонкой производительностью 1000 т/ч. Абсолютное давление в деаэраторе 0,6МПа, поогрев воды в деаэраторе 10¸40°С [12].

Конденсатор входит в теплообменное оборудование комплектующее турбину. Для Т–250/300–240 это К2–14000–1 со встроенным пучком составляющим 20% от общей площади и двумя отключающимися по цирк.воде половинами. Конденсатосборник типа КД–1100–1. Конденсатор поставляется в комплекте с 2 пароструйными эжекторами типа ЭПО–3–135–1.

В качестве исходных данных для выбора конденсатных насосов принимаем расходы конденсата в режиме номинальной нагрузки блока в конденсационном режиме. По данным [12] имеем следующие потоки:


Таблица 4.1

Потоки

Расход

т/ч

1. Основной конденсат с добавком хим.обессоленной воды

600

2. Конденсат уплотнений питательных насосов

75

3. Конденсат от калориферов котлов

30

4. Конденсат сетевых подогревателей

25

5. Каскад конденсата ПНД (во время пуска)

140

Всего

860


Конденсатные насосы турбины выбирают с одним резервным насосом: два насоса со 100% подачей. Расчётная подача насосов:



Теперь определяем исходя из давления в деаэраторе и преодоления сопротивления всей регенеративной системы и всего тракта от конденсатора до деаэратора, в том числе и высоты гидростатического столба в связи с установкой деаэратора на отметке 26м для создания подпора бустерных насосов.

Напор насосов перед БОУ:



Напор КЭН–II ступени:



где Shпот=hпнд+hоу+hтр+hпит.кл=4×3,1+3,2+5+7,7=28,3 м.вод.ст – сумма потерь напора в трубопроводах и регенеративнх подогревателях НД.

Для турбины с БОУ устанавливают две ступени конденсатных насосов: с небольшим напором после конденсатора и с полным после БОУ. Принимаем к установке насосы первой ступени (КНТ–1) 3´КСВ–500–85 с производительностью 500м3/ч, напором 85м и мощностью эл.двигателя 200кВт. Насосы второй ступени (КНТ–II) 3´КСВ–500–150 с производительностью 500м3/ч, напором 180м и мощностью эл.двигателя 320кВт.


4.2.1 Выбор питательных насосов

На электростанции с блочной схемой подача питательных насосов определяется максимальными расходами питательной воды на питание котлов с запасом не менее 5%. На данном блоке с закритическими параметрами устанавливается 1 насос с турбоприводом со 100% подачей. Дополнительно устанавливаем насос с электроприводом и гидромуфтой подачей 30–50%.

Для предотвращения кавитации и повышения надёжности питательных насосов, а также для создания необходимого давления на всасе питательного насоса. Устанавливаем предвключённые низкооборотистые бустерные насосы (БЭН) 3´ПД–650–160 с производительностью 650м3/ч, напором 160м и мощностью эл.двигателя 330кВт. Расчётный напор питательного насоса должен превышать давление пара на выходе из котла с учётом потерь давления в тракте и необходимой высотой подъёма воды.

Давление на выходе из насоса:



Давление на входе в бустерный насос:



Зная расход питательной воды Dпв=1020т/ч выбираем основной питательный турбонасос (ПТН): ПН–1100–350–24 с производительностью 1100м3/ч, напором 3370м. Резервный питательный электронасос (ПЭН):

ПЭ–600–300–2 с производительностью 600м3/ч, напором 3200м и мощностью эл. двигателя 6400 кВт.

Выбор оборудования теплофикационных установок ТЭЦ.

Номинальная тепловая мощность отопительных отборов турбины Т–250/300–240 Qтф=1383 ГДж/ч. При давлениях в верхнем отопительном отборе от 0,06 до 0,2 МПа, в нижнем от 0,05 до 0,15 МПа. Исходя из этого выбираем сетевые подогреватели: основной (нижний ПСГ–1)

ПСГ–5000–2,5–8–I с конденсатными насосами 3´КСВ–320–160–2. И пиковый (верхний ПСГ–2) ПСГ–5000–3,5–8–I с конденсатными насосами 3´КСВ–320–160–2 с производительностью 320м3/ч, напором 160м и мощностью эл. двигателя 250 кВт. Сетевые подогреватели устанавливаются индивидуально у турбины без резервных корпусов.


4.2.2 Выбор сетевых насосов

Отопительная нагрузка Qот=1951 ГДж/ч, нагрузка горячего водоснабжения Qгв=978 ГДж/ч. Температурный график 130¸70°С. Система горячего водоразбора закрытого типа.Схема включения водонагревателей при:



Принимаем двухступенчатую смешанную схему, присоединения ПСГ к линиям сетевой воды. Расчётный расход сетевой воды на отопление:


где qтр=3,82 т/ГДж – уд.расход сетевой воды на горячее водоснабжение при tпод=130°С.

Расчётный расход сетевой воды на отопление:



При групповой установке в качестве насосов второй ступени устанавливаем насосы СЭ–2500–180 их количество:



Тогда при необходимом напоре насосов первой ступени:



на первой ступени возможна установка насосов 5´СЭ–2500–60.


5. Выбор и расчёт топливного хозяйства


На проектируемой ТЭЦ основным топливом является мазут. На ТЭЦ мазут доставляется в основном по железной дороге в вагонах цистернах грузоподъемностью 50,60 и 120 т. Для разгрузки железнодорожных цистерн на ТЭЦ сооружается специально оборудованное приемно-сливное устройство открытого типа. Слив мазута из цистерн производится в межрельсовые каналы, по которым он самотеком направляется в приемную емкость. Для ускоренного слива мазут разогревают. Температура разогрева зависит от марки мазута и составляет 45-65 °С. Разогрев мазута в цистернах производится открытым паром, контактным способом. Для этого по всей длине фронта разгрузки предусматривается эстакада с площадками на уровне верха цистерн для обслуживания парового разогревательного устройства. Насосы, откачивающие мазут из приемной емкости, имеют резерв и обеспечивают перекачку мазута, слитого из цистерн, устанавливаемых под разгрузку, за 5 часов. Приемная емкость растопочного хозяйства 120 м3, насосы откачивающие из нее мазут устанавливаются без резерва. Приемные и основные ёмкости оборудуются змеевиками для местного разогрева мазута до 65-70 °С. В системе мазутного хозяйства используется пар давлением 0,8-1,3 МПа и температурой 200- 350 °С. Давление пара в мазутных подогревателях должно быть выше давления мазута.

Схема мазута для подачи к котлоагрегатам принимается двухступенчатая т.к. требуется давление на уровне 3,5МПа перед форсунками котлов с паромеханическим распылением мазута. Схема разогрева мазута для подачи к котлоагрегатам принимается двухступенчатая I ступень резервуары; II ступень– выносные подогреватели, которые рассчитаны на подогрев мазута до 135 °С и устанавливаются после насосов I ступени. Для применяемого мазута марки М100 требуемая вязкость не более 2,5 °УВ для паромеханических форсунок, что соответствует его температуре в 135°С. В основных резервуарах применяется циркуляционный разогрев мазута, что обеспечивает интенсивное перемешивание мазута, выравнивание его температуры в баке и выпаривание влаги.

Для постоянной циркуляции мазута по подающему мазутопроводу в мазутных магистралях, имеется трубопровод циркуляции обратно на мазутохозяйство.

В тракте слива мазута перед приемной емкостью устанавливаются: грубая фильтр-сетка и гидрозатвор; перед насосами I ступени фильтр-сетка с отверстиями 10-12 мм, перед насосами II ступени- фильтр тонкой очистки. На мазутопроводах устанавливаются аварийная и запорная арматура с дистанционным управлением, которое осуществляется со щита управления.

Мазутопровод расположен на эстакадах в общей изоляции с паровыми спутниками. Подача пара в мазутохозяйство по двум трубопроводам, пропускная способность составляет 75% расчетного расхода пара.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.