рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Разработка системы электроснабжения механического цеха

Сети напряжением до 1000 В подразделяются на питающие, прокладываемые от трансформаторной подстанции или вводного устройства до силовых пунктов, и распределительные, к которым присоединяются ЭП. В комплекс внутрицехового электроснабжения входят питающие и распределительные линии, РП напряжением до 1000 В, аппаратура коммутации и защиты сетей и ответвлений к отдельным ЭП. Питающие и распределительные сети могут быть выполнены по радиальным, магистральным и смешанным схемам.

Радиальные схемы наиболее часто используются для питания отдельных относительно мощных ЭП (двигатели компрессорных и насосных установок, печи и т.д.), а также в случаях, когда мелкие по мощности ЭП распределяются по цеху неравномерно и сосредоточены группами на отдельных участках (ремонтные мастерские, отдельные участки с непоточным производством и т.п.). К достоинствам радиальных схем относятся: высокая надежность питания (выход из строя одной линии не сказывается на работе потребителей, питающихся от других линий), а также возможность автоматизации переключений и защиты.

Магистральные схемы применяются для питания ЭП, обслуживающих один агрегат и связанных единым технологическим процессом, когда прекращение питания любого из этих ЭП вызовет необходимость прекращения работы всего технологического агрегата. Магистральные схемы находят широкое применение для питания большого числа мелких ЭП, распределенных относительно равномерно по площади цеха (металлорежущие станки в цехах механической обработки металлов и другие потребители).

На практике наибольшее распространение находят смешанные схемы, сочетающие в себе элементы радиальных и магистральных схем. Смешанные схемы характерны для крупных цехов металлургических заводов, для литейных, кузнечных и механосборочных цехов машиностроительных заводов.

Проектирование цеховых сетей во всех случаях должно выполняться на основе хорошего знания технологии проектируемого цеха, условий окружающей среды и степени ответственности отдельных ЭП.

Питающая сеть выполнена четырехжильным кабелем марки АВВГ, проложенным открыто по стенам и конструкциям, по смешанной схеме.

Распределительная сеть проектируется по радиальной схеме. Линии выполнены четырехжильным кабелем марки АВВГ, проложенным в стальных трубах в полу участков и отделений цехов.


2.7.1 Выбор сечений проводников питающей сети

Питающая сеть выполнена по смешанной схеме с помощью кабелей марки АВВГ. Расположение силовых пунктов (РП) и трасс кабельных линий приводится на рисунке 2.4.

Сечение кабелей цеховых сетей напряжением до 1кВ выбирается сравнением расчётного тока линии с допустимым длительным током принятых марок проводов и кабелей с учётом условий их прокладки и температуры окружающей среды.

Должно выполняться условие


,


где Iр – расчётный ток линии, А;

Iдоп – допустимый длительный ток на кабели данного сечения, А,

,

где – допустимый табличный ток для трёхжильных кабелей /3/, А;

0,92 – коэффициент, учитывающий ток для четырёхжильных кабелей, о.е.;

Кп – поправочный коэффициент на условия прокладки, о.е.;


 ,


где К1 – поправочный коэффициент, зависящий от температуры окружающей среды /3/, о.е.;

К2 – поправочный коэффициент на число работающих кабелей /3/, о.е.;

К3 – поправочный коэффициент на способ прокладки, равный 1, о.е.

Выбранные сечения проводов, кабелей и шин проверяют по допустимой потере напряжения. Делается это с целью обеспечения нормального напряжения на зажимах ЭП в пределах допустимых отклонений.

Нормами величина потерь напряжения в сети до 1 кВ не установлена. Однако, зная напряжение на шинах трансформаторной подстанции и подсчитав потерю напряжения в сети, можно определить отклонение на зажимах электроприёмников и сравнить с допустимыми значениями отклонения напряжения, которые приняты:

-                     для освещения ±5%;

-                     для электродвигателей -5%, +10%;

-                     для дуговых сталеплавильных печей и печей сопротивления ±5%;

-                     для сварочных агрегатов не ниже –(8…10)%;

-                     для кранов не ниже –(8…9)%.

Потеря напряжения в сети определяется по формуле, %,


,


где Iр – расчётный ток линии на данном участке, А;

L – расстояние от точки питания до точки приложения равнодействующей нагрузки, км;

rо, xо – активное и индуктивное сопротивление 1 км линии /1/, Ом/км;

cosj – коэффициент мощности данного участка, о.е.;

Uл – линейное напряжение, равное 380 В.

Выбор сечений проводников в сетях напряжением до 1 кВ, прокладываемых в помещениях, тесно связан с выбором плавких вставок и уставок расцепителей автоматических выключателей. При защите линий предохранителями или автоматами сечения выбираемых проводов и кабелей обязательно должны быть согласованы с номинальными токами плавкой вставки или токами уставки автомата, защищающими данный провод или кабель по /3/. Расчет сетей на потерю напряжения должен обеспечить необходимый уровень напряжения на зажимах ЭП и, как следствие, необходимый момент вращения электродвигателя или требуемую освещенность от источника света.

Ниже в качестве примера рассмотрен выбор сечения питающей сети КТП – РП1.

Расчётный ток, А,


,


где  для СП-4 берутся из таблицы 2.1;

.

Для прокладки принимаются кабель с алюминиевыми жилами сечением 35 мм2.

Для выбранных кабелей:

А;

Iдоп = 90·0,92 = 82,8 А;

Для открытой прокладки одного кабеля и при расчетной температуре воздуха 25оС Кп=1;

72,928 < 82,8.

Условие выполняется.

Далее определяются cosj и sinj нагрузки данной КЛ, о.е.,


,


;

.

Принимается кабель АВВГ 3x35+1x16, который имеет следующие параметры: r0 = 0,894 Ом/км, x0 = 0,088 Ом/км.

Потеря напряжения в линии, %,

.

Расчёт для остальных линий производиться аналогично, результаты расчёта сводятся в таблицу 2.4.

 

2.7.2 Выбор кабеля для конденсаторных установок

Выбор кабеля на линию КТП – КУ производится по зарядному току КУ, А,


,


Трансформатор №1

.

Принимаются два параллельно работающих кабеля марки АВВГ 3x185+1x95 c суммарным допустимым током Iдоп = 2·248,4 = 496,8 А.

Трансформатор №2

.

Принимаются два параллельно работающих кабеля марки АВВГ 3x120+1x70 c суммарным допустимым током Iдоп = 2·184 = 368 А.


2.7.3 Выбор сечений проводов распределительной сети

Выбор сечений проводников распределительной сети производится для силовых пунктов РП-2, РП-3, РП-15, РП-18.

Распределительные сети выполнены по радиальным схемам, кабелем марки АВВГ. Прокладка в цехах выполняется в стальных трубах в полу помещений. Расположение оборудования и трасс проводов распределительной сети показаны на рисунке 2.5.

Расчётный ток электроприёмника, А,


,


где Рном – номинальная активная мощность станка, кВт;

cosjн – номинальный коэффициент мощности станка, о.е.;

η – КПД станка, о.е.

Выбор сечений ведётся по условию


,


где Iдоп – допустимый длительный ток провода данного сечения, А,

,

где – допустимый табличный ток для четырёх одножильных проводов /3/, А;

Пример выбора сечения проводов для линии от РП-3 к фуговальному станку:

Расчётный ток станка, А,

.

Принимается кабель с алюминиевыми жилами сечением 2,5 мм2.

Для выбранных проводов:

Iдоп = 0,92·19 =17,48 А;

3,069 < 1·17,48.

Условие выполняется.

Потеря напряжения в линии, %,

Результаты выбора сечений остальных линий сводятся в таблицу 2.5.

Из таблицы 2.5 видно, что наиболее электрически удалённым электроприёмником является лифт, присоединенный к РП-18.

Напряжение на зажимах наиболее удалённого от КТП приемника, %,


Uдв = Uх – DUТ – DUc,


где Uх – напряжение холостого хода на зажимах вторичной обмотки трансформатора КТП, равное 105%;

DUТ - потеря напряжения в трансформаторе КТП, %,


 ,


где Uа – активная составляющая напряжения КЗ, %,


,


где DРк – потери КЗ /2/, кВт;

;

Uр – реактивная составляющая напряжения КЗ, %,


,


где Uк – напряжение КЗ /2/, %;

;

;

DUc – потеря напряжения в сети ( в питающей и в распределительной), %;

ΔUc = DUп + DUр,

ΔUc = 3,640 + 1,928 = 5,568;

Uдв = 105 – 1,2 – 5,568 = 98,232.

Таким образом, напряжение на зажимах наиболее удалённого станка находиться в допустимых пределах (-5%, +10%).

 

2.8 Расчёт токов короткого замыкания


Расчет токов КЗ необходим для выбора электрооборудования, коммутационных аппаратов, уставок релейной защиты.

Расчет токов КЗ в трехфазных сетях переменного тока напряжением до 1 кВ выполняется в именованных единицах (мОм) в соответствии с /4/.

Расчёт начинается с составления расчетной схемы с нанесением на ней точек КЗ. Расчётная схема представлена на рисунке 2.5. Т.к. на подстанции трансформаторы работают раздельно, то второй трансформатор на расчётной схеме не показывается. Расчет приводится для наиболее электрически близкого и дальнего РП (РП-15 и РП-18).

Ниже для примера приводится расчёт токов КЗ в точке К1.

Расчёт токов КЗ производится на наиболее удалённом силовом пункте (РП-18), на наиболее удалённом ЭП (лифт).

Составляется схема замещения, на которой указываются активные и реактивные сопротивления в мОм, приведенные к ступени напряжения сети точки КЗ. Схема замещения представлена на рисунке 2.6.

Для расчета предварительно выбираются автоматические выключатели. Автомат SF1 выбирается по номинальному току трансформатора с учетом допустимой перегрузки.

Расчетный ток выключателя, А,


,


  =1182.

Выбирается автоматический выключатель с номинальным током 1600 А.

Для остальных выключателей:

 SF2: Ip=31,037 А IномАВ=63 А;

 SF3: Ip=15,981 А IномАВ=25 А;

Параметры элементов схемы замещения.

Система: Uст.нн=0,4 кВ; Uст.вн=6,3 кВ; Iном.отк=20 кА.

Трансформатор: r1т=r0т=3,4 мОм; х1т=х0т=13,5 мОм.

SF1: rкв1=0,14 мОм; хкв1=0,08 мОм; rк1=0.

ТА1: rТА1=0; хТА1=0.

SF2: rкв2=7 мОм; хкв2=4,5 мОм; rк2=1,3 мОм.

ТА2: rТА2=11 мОм; хТА2=17 мОм.

КЛ2: l=200 м; rуд=1,435 мОм/м; худ=0,092 мОм/м; rуд0=3,42 мОм/м; худ0=1,286 мОм/м.

SF3: rкв3=12 мОм; хкв3=7,5 мОм; rк3=1,7 мОм.

КЛ3: l=28 м; rуд=12,5 мОм/м; худ=0,116 мОм/м; rуд0=15,3 мОм/м; худ0=2,91 мОм/м.

Эквивалентное индуктивное сопротивление энергосистемы, приведенное к ступени НН, мОм,

,


где UсрНН – среднее напряжение ступени НН трансформатора, В;

UсрВН – среднее напряжение ступени ВН, к которой подключен трансформатор, В;

 – максимальный ток трёхфазного КЗ на шинах 6 кВ, А;

.

Сопротивления кабельной линии КЛ2, мОм,

прямой последовательности:

rкл2=rуд·l,

rкл2=1,435·200=287;

с учетом нагрева кабеля (применяется для расчета минимального тока КЗ)

rкл2=rуд·l·СΘ,

rкл2=1,435·200·1,5=430,5;

хкл2=худ·l,

    хкл2=0,092·200=18,4;

обратной последовательности:

r0кл2=rуд·l,

r0кл2=3,42·200=684;

с учетом нагрева кабеля

r0кл2=rуд0·l·СΘ,

r0кл2=4,4·200·1,5=1026;

х0кл2=худ0·l,

х0кл2=1,286·200=257,2.

Сопротивления кабельной линии КЛ3, мОм,

прямой последовательности:

rкл3=rуд·l,

rкл3=12,5·28=350;

с учетом нагрева кабеля

rкл3=rуд·l·СΘ,

rкл3=12,5·28·1,5=525;

хкл3=худ·l,

хкл3=0,116·28=3,248;

обратной последовательности:

r0кл3=rуд·l,

r0кл3=15,3·28=428,4;

с учетом нагрева кабеля

r0кл3=rуд0·l·СΘ,

r0кл3=4,4·28·1,5=642,6;

х0кл3=худ0·l,

х0кл3=2,91·28=81,48.

Активное сопротивление дуги в точке К1 по /4/, мОм,

.

Суммарное сопротивление контактных соединений до места КЗ rкс=1,2 мОм.

Суммарные активное и индуктивное сопротивления прямой последовательности в максимальном режиме, мОм,


r1Σ=r1т + rкв1 + rк1+ r ТА1+ rкв2 + rк2 + r ТА2 + rкл2 + rкв3 + rк3 + rкл3 + rкс,


х1Σ=хс + х1т + хкв1 + х ТА1+ хкв2 + х ТА2 + хкл2 + хкв3 + хкл3,


,

.

Суммарные активное и индуктивное сопротивления прямой последовательности в минимальном режиме, мОм,


r’1Σ=r1т + rкв1 + rк1+ r ТА1+ rкв2 + rк2 + r ТА2 + rкл2 + rкв3 + rк3 + rкл3 +rкс ,


,


=993,24,

.

Начальное действующее значение периодической составляющей тока трёхфазного КЗ в максимальном режиме, кА,


,


где Uном – среднее номинальное напряжение сети, в которой произошло КЗ, В;

.

Ударный ток в максимальном режиме, кА,


,


где Куд – ударный коэффициент, о.е.,


 ,

где , град;

;


, с;


;


, c,


где , f – частота питающей сети, равная 50 Гц;

;

;

.

Суммарные активное и индуктивное сопротивления нулевой последовательности, мОм,


r0Σ=r0т + rкв1 + rк1+ r ТА1+ rкв2 + rк2 + r ТА2 + r0кл2 + rкв3 + rк3 + r0кл3 + rкс,


х0Σ= х0т + хкв1 + х ТА1+ хкв2 + х ТА2 + х0кл2 + хкв3 + х0кл3,


,

;

;

.

Начальное действующее значение периодической составляющей тока однофазного КЗ в минимальном режиме, кА,


,


.

Начальное действующее значение периодической составляющей тока двухфазного КЗ в минимальном режиме, кА,


 


.

Расчёт токов КЗ в остальных точках производится аналогично по /6/. Результаты расчёта приводятся в таблице 2.6.


Таблица 2.6 – Расчёт токов короткого замыкания

Точка КЗ

Вид КЗ

Максимальное значение

Минимальное значение

Iп0, кА

iуд, кА

Iп0, кА

К1

К(3)

0,341

0,482

К(2)

0,197

К(1)

0,185

К2

К(3)

0,732

1,035

К(2)

0,396

К(1)

0,337

К3

К(3)

15,528

31,372

К(2)

12,874

К(1)

15,148

К4

К(3)

8,832

13,662

К(2)

5,744

К(1)

3,940

К5

К(3)

1,456

2,059

К(2)

0,834

К(1)

0,844


2.9 Выбор коммутационной и защитной аппаратуры,

распределительных силовых и осветительных шкафов

 

2.9.1 Выбор автоматических выключателей на КТП

Автоматические выключатели (автоматы) предназначены для автоматического отключения электрических цепей при КЗ или ненормальных режимах (перегрузках, снижении или исчезновении напряжения), а также для нечастого включения и отключения токов нагрузки. Отключение выключателя при КЗ и перегрузках выполняется встроенным в выключатель автоматическим устройством – расцепителем. Автомат может иметь комбинированный расцепитель (электромагнитный + тепловой), полупроводниковый максимальный расцепитель или только электромагнитный расцепитель, отключающий ток КЗ.

Выбор автоматических выключателей производится по следующим условиям:

– номинальный ток расцепителя, А,


,


где Ip – расчётный ток линии, А;

– ток срабатывания расцепителя (срабатывание отсечки) выключателя, А,



где kн – коэффициент надежности, для ВА51 кн = 2,1, о.е.;

 Iкр – кратковременный максимальный ток, А,

 Iкр = Iпуск – для ответвлений и одиночных электроприёмников;

 Iкр = Iпик – для группы электроприёмников.

Пиковый ток группы электроприёмников, А,


,


где – номинальный ток наибольшего электроприёмника рассматриваемой группы, А,


,


- пусковой ток наибольшего электроприёмника, А,


,


где Kп – кратность пускового тока наибольшего электроприёмника, о.е.,

Kп = 5¸7 – для асинхронного электродвигателя с к.з. ротором, о.е.;

Ки – коэффициент использования наибольшего электроприёмника, о.е.

Проверка защитной аппаратуры производится по следующим условиям:

1)                Чувствительность к однофазному току КЗ:


 ,


где Iап.з = IСО – для автоматов;

Коэффициент чувствительности должен быть больше 1,4 ÷1,5 – при защите автоматическими выключателями;

2)                По отключающей способности:


 ,


где  – предельная коммутационная способность аппарата, кА;

3)                На динамическую устойчивость:


 ,


 где  – ток динамической устойчивости аппарата, кА.

Пример расчёта пикового тока для линии КТП – РП-18:

Номинальный ток наибольшего электроприёмника (лифта), А,

.

Пусковой ток наибольшего электроприёмника, А,

.

Пиковый ток, А,

.

Расчёт пиковых токов для других линий, отходящих от КТП, производится аналогично. Результаты расчёта приведены в таблице 2.13.

Пример выбора автомата приводится для линии КТП – РП-18.

Выбирается автомат ВА51-29 с IН.РАСЦ. = 31,5 А.

Условие выполняется.

Ток срабатывания отсечки принимается равным десятикратному току расцепителя:

.

Условие выполняется.

После выбора автоматов предварительно выбранные сечения проводников (проводов, кабелей) по условию нагрева и по потере напряжения должны быть проверены на выполнение условия защиты проводников от перегрева токами короткого замыкания. Необходимо рассчитать, чтобы номинальные токи расцепителей аппаратов защиты по отношению к допустимым длительным токовым нагрузкам проводников имели кратность не более 100%. Выполнение этого условия гарантирует в случае короткого замыкания срабатывание выключателя раньше, чем провод или кабель нагреется до опасной температуры. Если это условие не выполняется, то выбирают проводник с большей площадью сечения и с большим допустимым током.

Условие проверки, %,



где k – кратность номинального тока расцепителя аппарата защиты по отношению к допустимой длительной токовой нагрузке проводника /4/, о.е.;

.

Условие выполняется.

Проверка автомата:

1)                Чувствительность однофазному току КЗ:

 ;


 ;

2)                По отключающей способности:


 ,


 ;

3)                На динамическую устойчивость:


 ,


 .

Выбранный автомат не проходит по максимальным токам КЗ , но допускается к установке т.к. вводной автомат имеет ток срабатывания отсечки меньше, чем ток одноразовой коммутационной способности выбранного выключателя, и отключит КЗ.

Выбор автоматов других линий приводится в таблице 2.7.

Выбор вводного автомата на КТП производится по номинальному току трансформатора, с учётом перегрузки.

Номинальный ток трансформатора с учётом перегрузки, А,



Выбирается автоматический выключатель типа ВА53-43 с IН.РАСЦ. = 1600 А.

Выбор секционного автомата на КТП производится по току трансформатора, А,



Выбирается автоматический выключатель типа ВА53-41 с IН.РАСЦ.= 1000 А.

Выбор автомата на КТП на линию к конденсаторной установке производится по зарядному току КУ, А,


,

.


Выбирается автоматический выключатель типа ВА51-39 с IН.РАСЦ. = 630 А.

Выбор коммутационных аппаратов производится также для распределительных пунктов РП-15 и РП-18 аналогично выбору выключателей на КТП. Результаты приводятся в таблице 2.7.


2.6.2 Выбор автоматических выключателей в ЩО

Выбор автоматов в ЩО производится по расчетному току групповых и питающих (для МЩО) линий, чтобы выполнялось условие Ip<Iн.расц . Для групповых линий на основании таблицы 2.2 выбираются автоматы ВА51-29 с номинальными токами расцепителей 6,3, 10 и 16 А для соответствующих участков. Для питающих линий выбираются автоматы ВА51-29. Для щита ЩО4 номинальный ток расцепителя 6,3 А; для щитов ЩО3 и ЩО6 - 10 А; для щитов ЩО1 и ЩО9 - 16 А; для щитов ЩО5, ЩО7 и ЩО8 - 25 А. На линии к магистральному щиту освещения устанавливается выключатель ВА52-33 с Iн.расц=125 А.

 

2.6.3 Выбор силовых распределительных пунктов и групповых

щитов освещения

Для распределения электроэнергии применяют распределительные шкафы (пункты) с автоматическими выключателями или плавкими предохранителями. Распределительные пункты серий ПР11, ПР24 и ПР9000 снимают с производства. Вместо них для сетей переменного тока 50 Гц выпускаются шкафы ПР8501 для силовых и осветительных ЭУ, которые с трёхполюсными выключателями могут быть использованы также и для силовых ЭП. Продолжается выпуск силовых распределительных шкафов серии ШР11 с плавкими предохранителями ПН-2 (или НПН-2) и с рубильником на вводе.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.