рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Районная электрическая сеть

Районная электрическая сеть

СОДЕРЖАНИЕ


1         ПОТРЕЛЕНИЕ АКТИВНОЙ И БАЛАНС РЕАКТИВНОЙ МОЩНОСТИ В ПРОЕКТИРУЕМОЙ СЕТИ

1.1      Задачи проработки раздела

1.2      Обеспечение потребителей активной и реактивной мощности

1.3      Баланс реактивной мощности

1.4      Размещение компенсирующих устройств электрической сети

2         ВЫБОР НОМИНАЛЬНОГО НАПРЯЖЕНИЯ, СЕХЕМЫ,ОСНОВНЫХ ПАРАМЕТРОВ ЛИНИЙ И ПОДСТАНЦИЙ

2.1      Задачи и исходные положения проработки раздела

2.2      Формирование вариантов схемы и номинального напряжения сети

2.3      Выбор сечений. Проверка по нагреву и допустимой потери напряжения

2.4      Выбор числа и мощности трансформаторов

2.5      Выбор схем электрических соединений подстанций

3.        РАСЧЕТ ПАРАМЕТРОВ ОСНОВНЫХ РЕЖИМОВ СЕТИ

3.1      Задачи и исходные условия расчетов

3.2      Составление схемы замещения районный сети

3.3      Электрический расчет

3.3.1   Расчет режима максимальных нагрузок

3.3.2   Расчет режима минимальных нагрузок

3.3.3   Расчет после аварийных режимов

4         РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ В СЕТИ

5         ОСНОВНЫЕ ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТАТЕЛИ СПРОЕКТИРОВАННОЙ СЕТИ

1.ПОТРЕБЛЕНИЕ АКТИВНОЙ И БАЛАНС РЕАКТИВНОЙ МОЩНОСТИ В ПРОЕКТИРУМОЙ СЕТИ


1.1 Задачи проработки раздела


Задачами расчетов и анализа получаемых результатов в данном разделе меняются:

1.оценка суммарного потребления активной мощности в проектируемой электрической сети;

2.анализ выполнения условия баланса реактивной мощности в проектируемой сети;

3.определение суммарной мощности компенсирующих устройств, устанавливаемых в сети;

4.определение мощности компенсирующих устройств и их размещение.


1.2 Обеспечение потребителей активной и реактивной мощности


Потребление активной мощности проектируемой сети в период наибольших нагрузок слагается из заданных нагрузок в пунктах потребления электроэнергии и потерь мощности в линиях, понижающих трансформаторах и автотрансформаторах.

Активная наибольшая суммарная мощность, потребляемая в проектируемой сети, составляет:

где

- активная наибольшая нагрузка подстанции i, i=1,2…n;

k0(p) = 0,95 …0,96 – коэффициент одновременности наибольших нагрузок подстанции;

∆Р*с =0,05 – суммарные потери мощности в сети в долях от суммарной нагрузки подстанции.

Выбираем k0(p) = 0,95, тогда

Соответствующая данной  необходимая установленная мощность генераторов электростанций определяется следующим образом:

 где

-электрическая нагрузка собственных нужд;

-оперативный резерв мощности электростанции.

Нагрузка собственных нужд зависит от типа электрической станции и может быть ориентировочно принята для КЭС – 3..8 %, для ТЭЦ – 8…14;, для АЭС – 5…8%, для ГЭС – 0,5…3% от установленной мощности генераторов электрической станции.

Оперативный резерв () обоснованный экономическими сопоставлениями ущерб от вероятного недоотпуска электроэнергии при аварийном повреждении агрегатов на электростанции с дополнительными затратами на создание резерв мощности. Ориентировочно резервная мощность электростанций должна составлять 10…12% от суммарной установленной мощности генераторов, но не менее номинальной наиболее крупного из генераторов, питающих рассматриваемых потребителей.

Принимаем =10 % ; =3 %, тогда


1.3 Баланс реактивной мощности

Источником реактивной мощности в системе является генераторы электростанции. Располагаемая реактивная мощность электростанций определяется согласно номинальному коэффициенту мощности установленных на станциях генераторов. Кромке этого, в электрических сетях широко используется дополнительные источники реактивной мощности – компенсирующие устройства (КУ). Традиционный тип КУ, устанавливаемых на подстанциях потребителей, является конденсаторные батареи.

На основе специальных расчетов распределения реактивной мощности в электроэнергетической системе для каждого узла системы определяется реактивная мощность, которую целесообразно передать из системы в распределительные сети, питающиеся от того или иного зла.

Поэтому при проектировании электрической сети, получающей питание от системы, задается реактивная мощность Qс, которую целесообразно потреблять из системы (в заданном узле присоединения) в режиме наибольших нагрузок. Потребление большей мощности приведет к дополнительной нагрузке системных источников реактивной мощности, дополнительным затратам на генерацию и передачу этой мощности и, следовательно, к отступлению от оптимального режима питающей системы. В связи с этим в проекте следует предусмотреть мероприятия, обеспечивающие выполнение поставленных электроэнергетической системы условий по потреблению реактивной мощности.

Для этого необходим расчет баланса реактивной мощности.

Следует помнить, что в питающих сетях реактивная мощность нагрузки в большей мере, чем активная, определятся потерями в сети. При недостатке реактивной мощности в сети приходиться использовать дополнительные источники, например, батареи статических конденсаторов или синхронные компенсаторы.

Уравнение баланса реактивной мощности в электрической сети имеет вид:

где

=- наибольшая реактивная мощность, потребляемая в сети (мощность генераторов);

- суммарная мощность компенсирующих устройств, необходимая по условию баланса;

- потери в сопротивлениях линии;

 - 0,98…1 – коэффициент несовпадения максимумов нагрузок по времени суток;

n – количество подстанций.

Для воздушных линий 100 кВ в первом приближении допускается считать равными потери и генерацию реактивной мощности в линиях. При выполнении расчетов в сети с номинальными напряжением 220 кВ необходим приближенный расчет потерь (=0,42 Ом/км) для генерации реактивной мощности воздушными линиями.


Оценить приближенно потери в трансформаторах подстанций позволяет следующее выражение:


где

- относительная величина потерь мощности при каждой трансформации напряжения;

 - число трансформаций по мощности для -групп из -подстанций;

- количество подстанций, имеющих одинаковое число трансформаций нагрузки;

- количество групп подстанций с разным числом трансформаций напряжения;

-номинальная мощность -й подстанции.

Уравнение баланса имеет вид:



1.4 Размещение компенсирующих устройств электрической сети


Конденсаторные батареи суммарной мощностью  должны быть распределены между подстанциями проектируемой сети таким, образом, чтобы потери активной мощности в сети были минимальными.

Размещение компенсирующих устройств (КУ) по подстанциям электрической сети влияют на экономичность сети, а также на решение задач регулирования напряжения. В связи с этим могут даны следующие рекомендации по размещению КУ:

А)в электрических сетях и более номинальных напряжений (например,220/110/35; 220/110; 110/35 кВ) следует, в первую очередь, осуществлять компенсацию реактивной мощности в сети более низкого напряжения, например, 110 или 35 кВ;

Б) в сети одного номинального напряжения экономически целесообразна, в первую очередь, компенсация реактивных нагрузок наиболее электрически удаленных подстанций (по активному сопротивлению сети);

В) при незначительной разнице в электрической удаленности от источника питания в сети одного может производиться по условию одинаковости коэффициентов мощности нагрузок на шинах 10 кВ, удовлетворяющих требованию баланса реактивной мощности в проектируемой сети:


, где


- номера подстанций, на которых предусматривается установка КУ.

Тогда мощность конденсаторной батареи в каждом из рассматриваемых узлов определяется в соответствии с выражением:



Компенсация реактивной мощности оказывает существенное влияние на экономические показатели функционирования электрической сети, т.к. позволяет снизить потери активной мощности и электроэнергии в элементах сети. При выполнении норм экономически целесообразной компенсации реактивной мощности у потребителей на шинах 10 кВ подстанций должен быть доведен до значений . Исходя из этого, условия на каждой подстанции должны быть, установлены конденсаторные батареи мощностью:



На пятой подстанции вычисленном мощность КУ отрицательна и установка КУ в данном узле нецелесообразна. Исключаем этот узел из числа  и уровняем мощность КУ в узлах сети:

Рассчитываем мощность КУ и потребляемую реактивную мощности с учетом мощности установленных конденсаторных батарей.

Таблица 1.

П/п

Р, МВт

Q, МВр

Qк, МВАр

Q-Qк, МВАр

1

2

4

5

1

22

19,36

15,07

4,29

2

14

8,68

5,95

2,73

3

16

12

8,88

3,12

4

8

3,84

2,28

1,56

5

4

1,32

-

1,32

6

8

3,84

2,28

1,56

2 ВЫБОР НОМИНАЛЬНОГО НАПРЯЖЕНИЯ, СХЕМЫ, ОСНОВНЫХ ПАРАМЕТРОВ ЛИНИЙ И ПОДСТАНЦИЙ


2.1 Задачи и исходные положения проработки раздела


В этом разделе проекта выбираются номинальное напряжение электрических сетей, ее схема, образуемая линиями электропередачи, схемы электрических соединений понижающих подстанций, марки проводов воздушных линий и число мощностей трансформаторов подстанций.

Эти фундаментальные характеристики определяют капиталовложения и расходы по эксплуатации электрических сетей, поэтому их комплекс должен отвечать требованиям экономической целесообразности. При этом следует учитывать, что указанные характеристики и параметры сети находятся в тесной технико-экономической взаимосвязи.

В общем виде требования к комплексу схем, номинальному напряжению и основным параметрам сети должны обеспечивать экономическую ее целесообразность (на основе принятых или нормирования технико-экономических критериев). При обеспечении обоснованной (или заданной) надежности электроснабжения потребителей электроэнергией и нормированного количества напряжения.

Общие принципы экономически-целесообразного формирования электрических сетей могут быть сформированы следующим образом:

А)схема сети должна быть простой, передача электроэнергии потребителям осуществляться по кратчайшему пути, что обеспечивает снижение стоимости сооружения линии и экономию потерь мощности и электроэнергии;

Б)схемы электрических соединений понижающих подстанций также должны быть, простыми, что обеспечивает снижение стоимости их сооружения и эксплуатации, а также – повышение надежности их работ;

В)следует стремиться осуществлять электрические сети с минимальным количеством трансформаций напряжения, что снижает необходимую установленную мощность трансформаторов и автотрансформаторов, а также – потери мощности и электроэнергии;

Г) комплекс номинального напряжения и схемы сети должны обеспечивать необходимое качество электроснабжения потребителей и выполнение технических ограничений электрооборудования линий и подстанций (по тока в различных режимах сети, по механической прочности и т.д.).


2.2 Формирование вариантов схемы и номинального напряжения сети


Формирование вариантов схем сетей:

А) радиально-магистрального типа, при котором линии двухцепные или одноцепные, не образуют замкнутых контуров;

Б) простейшего замкнутого кольцевого(петлевого) типа;

Магистрально0радиальные сети, как правило:

А) имеют наименьшую длину трасс линий;

Б) такие же величины потерь напряжения, мощности и энергии;

В) возможности применения простых схем на стороне высшего напряжения транзитных (проходных) подстанций;

Г) могут иметь высокую суммарную длину и стоимость линий, которые на большей части (или на всех участках) должны сооружаться двухцепными по условию надежного питания ответственных и крупных подстанций;

Д) обладают большими резервами пр пропускной способности линий при перспективной росте нагрузок в заданных пунктах.

Петлевые обычно:

А) обладают повышенной длиной трасс линий;

Б) имеют повышенные потери мощности и электроэнергии и большие потери напряжения в послеаварийных режимах (отключение участка «ЭС - подстанции 1» или «ЭС - подстанция 5»;

В) могут иметь весьма простые схемы транзитных подстанций;

Г)могут иметь пониженную суммарную стоимость линий - одноцепных на всех или большей части участков;

Д) обладают хорошими возможностями присоединения новых подстанций, расположенных на территории района.

Выбираем:

1)магистрально-радиальную двухцепную схему, т.к. в составе потребителей присутствует первая категория (рисунок 1);

2)петлевую одноцепную схему (рисунок 2).

Определяем номинальное напряжение сети по формуле Г.А.Илларионова:



Определяем номинальное напряжение в первой ветви:

Определяем номинальное напряжение во второй ветви


2.3 Выбор сечений. Проверка по нагреву и допустимой потери напряжения


Экономический выбор сечений проводов воздушных линий электропередача проводится по экономической плоскости тока .

Порядок расчета: определяем тока на участке сети:


где


- активная и реактивная мощности линии в режиме максимальных нагрузок, кВт, квар;

n – количество цепей линии электропередачи;

Выбираем алюминиевый неизолированный провод. При .

Определяем экономическое сечение:



Определяем ближайшее стационарное сечение АС-50/26.

Данное сечение провода не укладывается в пределах для линий 110 кВ АС-70-АС-240, поэтому второй вариант конфигурации сети напряжения

Расчеты сечению линии электропередачи по варианту 1 сводим в таблицу 2.


Линия

n

S, МВА

Uном,кВ

I, А

Марка провода

Iдоп, А

Iав, А

Откл.

линии

1

2

3

4

5

6

7

8

9

1

2

58,2

110

120

АС-120

375

180


2

2

25,6

110

70

АС-70

265

105


Расчетная токовая нагрузка линии:


, где

- ток в -й линии;

-коэффициент, учитывающий изменение нагрузки по годам эксплуатации линии, для линий 110…220 кВ принимается равным1,5,для линии 35 кВ;

- коэффициент, учитывающий число часов использования максимальной нагрузки Тнб.

Для линии 1

Для линии 2

Проверяем выбранное сечение линий по нагреву. Проверку выполняем для послеаварийных режимов работы сети. Для двухцепных линий электропередачи наиболее тяжелыми будем отключены одной цепи.



Условия по нагреву выполняется. Проверку по потере напряжения выполняет как для нормального так и для послеаварийного режима работы сети. Результаты заносим в таблицу 3.


Таблица 3.

Линии

L, км

Δ, Ом/км

X0, Ом/км

R, Ом

X0, Ом

Номинальный режим

Послеаварийный режим

P, МВт

Q, МВАр

∆U, %

P, МВт

Q, МВАр

∆U, %

1

2

3

4

5

6

7

8

9

10

11

12

1

100

0,249

0,427

24,9

42,7

46

8,97

4,3

46

8,97

8,6

2

115

0,428

0,444

42,8

51,1

26

5,61

3,5

26

5,61

7,0



Условия по потере напряжения выполняются.


2.4 Выбор числа и мощности трансформаторов


При проектировании электрических сетей на подстанциях всех категорий рекомендуется применять не более двух трехфазных трансформаторов. Установка большого количества трансформаторов может быть допущена на основании технико-экономических расчетов. Однотрансформаторные подстанции целесообразно применять в следующих случаях.

Как первый этап развития двухтрансформаторной подстанции при условии, что достижение полной нагрузки подстанции произойдет не ранее, чем через три года после ввода первого трансформатора и наличии резервного питания по сетям среднего и низкого напряжений.

Для питания потребителей III категории, когда по состоянию подъездных путей замена поврежденного трансформатора возможна не позднее, чем через 24 часа.

При наличии второго источника питания со стороны низшего напряжения сильного трансформатора.

При определении номинальной мощности трансформаторов необходимо учитывать допустимые систематические и аварийные перегрузки трансформаторов, в целях снижения суммарной установленной мощности.

При расчете номинальных мощностей трансформаторов следует исходить из следующих положений.

На двухтрансформаторный подстанциях при отсутствии резервирования по сетям вторичного напряжения мощность каждого трансформатора выбирают равной не более 0,7…0,8 суммарной нагрузки подстанции на расчетный период (в период максимальной нагрузки).

При отключении наиболее мощного трансформатора оставшийся в работе должен обеспечить питания потребителей I, II категорий во время ремонта или замены этого трансформатора с учетом допустимой перегрузки 40 %.

На однотрасформатора Sном выбирается, исходя из максимальной расчетной нагрузки S потребителей, т.е. Sном> S, при этом следует стремиться, максимально загрузить трансформаторы сети (до 100 %).

Если в составе нагрузки подстанции имеются потребителей I-й категории или Рмах≥ 10МВт, то число устанавливаемых трансформаторов должно быть не менее двух. Поэтому в соответствии с существующей практикой проектирования мощность трансформатора на понижающих подстанциях рекомендуется выбирать из условия допустимой перегрузки в послеаварийных режимах до 70…80 % на время максимальной общей суточной продолжительности не более 6 часов в течение не более 5 суток, т.е. по условию:


,где


- число однотипных трансформаторов, устанавливаемых на подстанции.

В случае установки АТ или трехобмоточных трансформаторов это условие приводиться к виду:



Выбираем трансформаторы подстанции и результаты сводим в таблицу 4.


Таблица 4.

Подстанции

Тип трансформатора

ВН, кВ

НН, кВ

∆Ркз, кВТ

∆Рхх, кВТ

Uкз, %

Iхх, %

1

2

3

4

5

6

7

8

1

ТДН-16000/110

110

10,5

85

18

10,5

0,7

ТДН-16000/110

110

10,5

185

18

10,5

0,7

2

ТДН-10000/110

110

10,5

58

14

10,5

0,9

ТДН-10000/110

110

10,5

58

14

10,5

0,9

3

ТДН-10000/110

110

10,5

58

14

10,5

0,9

ТДН1-6000/110

110

10,5

85

18

10,5

0,7

4

ТМН-6300/110

110

10,5

44

10

10,5

1

ТМН-6300/110

110

10,5

44

10

10,5

1

5

ТМН-2500/110

110

10,5

22

5,5

10,5

1,5

ТМН-2500/110

110

10,5

22

5,5

10,5

1,5

6

ТМН-6300/110

110

10,5

44

10

10,5

1

ТМН-6300/110

110

10,5

44

10

10,5

1

Страницы: 1, 2


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.