рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Расчеты, связанные с аппаратурой в энергосистеме

Расчеты, связанные с аппаратурой в энергосистеме

Введение

электрический энергосистема трансформатор напряжение

Техническое перевооружение железнодорожного транспорта осуществляется на базе широкой электрификации линий, которая проводится с использованием новейших достижений техники, нового прогрессивного оборудования. Одним из перспективных направлений решения этой задачи является применение системы электроснабжения 2×25 кВ. С использованием этой системы в десятой и одиннадцатой пятилетках электрифицировано около 1100 км линий Московской, Белорусской, Целинной, Горьковской дорогах, в двенадцатой пятилетки было электрифицировано ещё не менее 1700 км на Горьковской, Целинной, Алма-атинской и Байкало-Амурской дорогах.

Система электроснабжения 2×25 кВ имеет ряд достоинств по сравнению с обычной системой переменного тока 25 кВ: меньшие нагрузки на провода контактной сети и потери напряжения и энергии в тяговой сети, уменьшенные влияния на линии связи. Снижение потерь позволяет значительно увеличить расстояние между тяговыми подстанциями, что даёт определённый экономический эффект, и располагать их в наиболее удобных для эксплуатации местах.

Положительные свойства системы электроснабжения 2×25 кВ дают возможность применять её для усиления устройств электроснабжения при возросшем грузопотоке без увеличения числа тяговых подстанций. Такой вид усиления можно производить на отдельных лимитирующих межподстанционных зонах и даже на части их около подстанций, где особенно велика нагрузка проводов и потери напряжения.

При системе электроснабжения 2×25 кВ в пять раз по сравнению с системой 25 кВ уменьшается зона, в которой требуется реконструкция существующих воздушных линий связи и других коммуникаций по условиям электромагнитного влияния.



Исходные данные


Исходными данными для курсового проекта являются:

1. Вариант схемы питания (рисунок 1);


Рисунок 4. Двухцепная ЛЭП-110 кВ

2. Номер проектируемой тяговой подстанции - 4;

3. Род тока – переменный (2×25 кВ);

4. Характеристика источников питания (таблица 1);


Таблица 1. Параметры питающей энергосистемы

№ варианта

Параметры системы

ИП1

ИП2

Sкз1, МВА

Sс1, МВА

Sкз2, МВА

Sс2, МВА

14

1700

2200

760


5. Данные по подстанции (таблица 1).


Таблица 2. Данные по понизительным трансформаторам (ТП), трансформаторам районной нагрузки (ТРН), фидерам районной нагрузки и количеству перерабатываемой электроэнергии.

варианта

ТП

ТРН

Sф 35кВ / кол-во

Sф 10кВ / кол-во

Wгод,

кВтч×106

Sн,

МВА

UВН,

кВ

UСН,

кВ

UНН,

кВ

кол-во

Sн,

МВА

UВН,

кВ

UСН,

кВ

UНН,

кВ

кол-во

16

110

2*25

10

3

10

110

-

10

1

-

800/8

85




Таблица 3. Длины ЛЭП

варианта

Длина, км

l1

l2

l3

l4

l5

l6

l7

14

79

72

75

70

72

79

75


Таблица 4. Данные по цепям собственных нужд

Наименование

потребителя

ku

cosφ

№ варианта

7

Мощность, кВт

Рабочее освещение

0,7

1,0

25

Аварийное освещение

1,0

1,0

2,3

Моторные нагрузки

0,75

0,8

32

Печи отопления и калориферы

0,65

1,0

23

Потребители СЦБ

0,75

0,8

43

Цепи управления,

защиты и сигнализации

0,7

1,0

2,5

Зарядно-подзарядный агрегат

0,7

1,0

9,5


Таблица 5. Данные для расчёта заземляющих устройств

варианта

Расчётный параметр

Сопротивление верхнего слоя земли, ρ1, Ом×м

Сопротивление нижнего слоя земли, ρ2, Ом×м

Толщина

верхнего слоя

земли, h, м

Время протекания , с

7

400

80

2,0

0,4

 

Таблица 6. Время выдержки защит

варианта

Время выдержки, t, с

Место установки защиты

Вводы

220 кВ

Вводы

35 кВ

Вводы

2×27,5 кВ

Вводы

10 кВ

Фидер

35 кВ

Фидер

2×27,5 кВ

Фидер

10 кВ

4

2,0

1,5

1,0

1,0

1,0

0,5

0,5





Однолинейная схема главных электрических соединений. Структурная схема подстанции


Наиболее экономичная схема подстанции для совместного питания районных и тяговых потребителей получается при использовании трёхобмоточных однофазных трансформаторов. В этой схеме трансформаторы 1,2,3 и 4 подключают к первичным шинам 110 кВ по схеме полного треугольника, для тяги используют вторичные обмотки трансформаторов , обмотки всех трёх трансформаторов соединяют в звезду для питания района. Трансформатор 4, питающий только район, является резервным для тяги и поэтому должен иметь три варианта подключения к шинам первичного напряжения 110 кВ и два варианта подключения к РУ 2×25 кВ. При выходе из строя одного из тяговых трансформаторов заменяет его трансформатор 4, а район в это время питается с ухудшенным качеством напряжения.

Для улучшения электроснабжения районных потребителей схему с тремя трёхобмоточными трансформаторами дополняют одним трёхфазным двух- или трёхобмоточным трансформатором. В этом случае э.п.с. в нормальном режиме получает питание от двух однофазных трансформаторов, районная нагрузка от трёхфазного. При отключении любого однофазного трансформатора его заменяет резервный трансформатор 4.

Рисунок 2. Структурная схема соединений элементов ТП при системе 2×25 кВ.



1 – вводы 110 кВ; 2 – ОРУ – 110 кВ; 3 – трёхобмоточный однофазный трансформатор 110/2×25/10 – резервный трёхобмоточный однофазный трансформатор 110/10, 5 – РУ-2×25 кВ; 6 – фидеры к/сети или питающие провода; 7 – ДПР; 9 - РУ-10 кВ; 10 – фидеры районных потребителей 10 кВ; 11 – трансформатор районных нагрузок; 12 – ЗРУ-10 кВ; 8 – фидера районных потребителей 10 кВ.


Выбор типа силового трансформатора


Силовые трансформаторы общего назначения по своим основным техническим параметрам должны удовлетворять требованию ГОСТ 11677-75, а также ГОСТ на трансформаторы различных классов напряжения.

Условное обозначение трансформатора содержит буквенное обозначение, характеризующее число фаз (О – однофазные, Т - трёхфазные), вид охлаждения (М – естественное масляное, Д – масляное с дутьём и естественной циркуляцией масла, ДЦ – масляное с дутьём и принудительной циркуляцией масла), число обмоток, если их больше двух, работающих на самостоятельные сети (для трёхобмоточного трансформатора применяют букву Т), и вид переключения ответвлений; цифровое обозначение, характеризующее номинальную мощность и класс напряжения; год выпуска рабочих чертежей трансформаторов данной конструкции; климатическое исполнение и категорию размещения по ГОСТ 15150-69 и 15543-70.

Кроме того, в обозначении трансформаторов могут быть следующие буквы: Н – выполнение одной из обмоток с устройствами РПН; А – автотрансформатор (впереди обозначения); Р – трансформатор с расщеплённой обмоткой низшего напряжения (после числа фаз); Ж – для железнодорожного транспорта, электрифицированного на переменном токе; Э – трансформаторы, предназначенные для электрификации железных дорог (ставилось ранее в конце общего обозначения).

Силовые трансформаторы имеют устройства для переключения ответвлений обмоток: РПН – ступенчатое регулирование (переключение) под нагрузкой; ПБВ – переключение при отключенном трансформаторе, т.е. без возбуждения.

Трансформаторы допускают параллельную работу в следующих сочетаниях: двухобмоточные друг с другом, трёхобмоточные друг с другом на всех трёх обмотках; двухобмоточные с трёхобмоточными, если установлено, что нагрузка на одной из обмоток параллельно работающих трансформаторов не превышает её нагрузочную способность.

В аварийных случаях трансформаторы с системами М, Д, ДЦ допускают кратковременные перегрузки сверх номинального тока независимо от длительности предшествующей нагрузки, температуры охлаждения среды и места установки согласно ГОСТ 14209-69.

Трёхобмоточный трансформатор допускает любое распределение длительных нагрузок по его обмоткам при условии, что ни одна из обмоток не будет нагружена током, превышающим ток перегрузки, а суммарные нагрузочные потери не превысят сумму потерь холостого хода и наибольшего из значений потерь короткого замыкания трёх пар обмоток.

Выбираем тяговый трансформатор типа – ОРДТНЖ-16000/110-79 У1.

Обозначение типа трансформатора расшифровывается следующим образом: О – однофазный, Р – с расщеплённой обмоткой НН, Д – охлаждение с принудительной циркуляцией воздуха и естественной циркуляцией масла, Т - трёхобмоточный, Н – с регулированием напряжения под нагрузкой, Ж – для питания переменным током электрифицированных железных дорог; номинальная мощность – 16000 кВА; класс напряжения обмотки ВН – 110 кВ; год выпуска рабочих чертежей 1979; У1 – исполнение для районов с умеренным климатом при размещении на открытом воздухе.



Таблица 8. Основные технические данные трансформатора ОРДТНЖ-16000/110-79 У1

Номинальная

мощность, кВА

Номинальное

напряжение

обмоток, кВ

Схема и группа соединения

Напряжение к.з.,

%

Потери, кВт

Ток х.х., %

Масса, кг

Габаритные

размеры, мм

ВН

СН

НН

(расщеплённая)

ВН-НН

ВН-СН

СН-НН

НН1-НН2

холостого хода

Короткого

замыкания

ВН-НН

ВН-СН

СН-НН

16000

110

27,5

10

11

9,6

17

6

-

26

135

140

90

0,5

83500

7960×4900×7640


Выбор типа трансформатора районной нагрузки


Выбираем районный трансформатор типа – ТДН -16000/110- 86. Обозначение типа трансформатора расшифровывается следующим образом: Т – трёхфазный, М – естественная циркуляция воздуха и масла, Н – наличие системы регулирования напряжения под нагрузкой; номинальная мощность – 16000 кВА; класс напряжения обмотки ВН 110 кВ.


Таблица 9. Основные технические данные трансформатора ТМН-10000/110

Номинальная

мощность, кВА

Номинальное

напряжение

обмоток, кВ

Схема и группа соединения

Напряжение

к.з., %

Потери, кВт

Ток х.х., %

Масса, кг

Габаритные

размеры, мм

ВН

НН

ВН-НН

холостого хода

короткого замыкания

10000

110

10

/ - 11

10,5

5,6

33,5

0,9

12900

4020×3350×3800


Разработка однолинейной схемы тяговой подстанции


Первоначальной задачей курсового проекта является разработка однолинейной схемы подстанции, которая определяет состав необходимого оборудования и аппаратуры.

Схемы распределительных устройств подстанции определяется местом тяговой подстанции (ТП) в схеме её внешнего электроснабжения (опорная, промежуточная, тупиковая) и назначением конкретного РУ, а также количеством силовых и тяговых трансформаторов.

Однолинейная схема ТП составляется на основе типовых проектов и конкретных условий задания.

В курсовом проекте однолинейная схема выполняется в виде чертежа, на котором показаны все РУ подстанции и соединения между ними. После выбора оборудования и аппаратуры на чертеже указываются их типы. Чертёж выполняется с учётом требований ЕСКД для электрических схем.

При выборе схемы главных электрических соединений ТП необходимо учитывать следующие требования:

- надёжность работы;

- экономичность;

- удобство эксплуатации;

- безопасность обслуживания;

- возможность расширения.

Надёжность работы ТП обеспечивается:

-резервированием силовых трансформаторов, преобразовательных агрегатов, аппаратуры и токоведущих частей;

- секционирование сборных шин разъединителями или выключателями, снабжёнными соответствующими автоматическими устройствами;

- устройством обходных цепей с выключателями для замены основных выключателей на время ремонта.

Удобство эксплуатации и безопасность обслуживания основного оборудования схемы главных электрических соединений обеспечивается простотой и наглядностью схемы, обеспечением минимального объёма переключений при изменении режима работы, доступностью оборудования и аппаратуры для ремонта.

В соответствии с указанными требованиями разработаны типовые схемы РУ:

1 ОРУ-110 (220) кВ опорных ТП: а) с количеством вводов до 5 выполняется по схеме с одинарной, секционированной выключателем, и обходной системой шин; б) с количеством вводов 5 и более – с двумя рабочими системами шин и обходной системой шин.

2 ОРУ-110 (220) кВ транзитных ТП выполняют по мостиковой схеме с рабочей и ремонтной перемычками.

3 ОРУ-110 (220) кВ отпаечных и тупиковых ТП выполняют по схеме «два блока (ввода) с неавтоматической перемычкой (без выключателя)».

4 ОРУ-35 (10) кВ с первичным напряжением ТП 110 (220) кВ выполняется по схеме с одной рабочей системой шин, секционированной выключателем.

5 РУ-27,5 кВ имеет трёхфазную рабочую систему шин и запасную шину. Две фазы секционированы разъединителями. Третья фаза соединяется с контуром заземления и не секционируется.

6 РУ-2×27,5 кВ имеет трёхфазную рабочую и запасную системы шин. Четыре шины, к которым подключены фидеры контактной сети и питающие провода соответствующих двух фаз, секционируют разъединителями. Шина третьей фазы не секционируется.

Описание назначения основных элементов схемы тяговой подстанции

-          Силовой трансформатор предназначен для преобразования электрической энергии по уровню напряжения.

-          Выключатель предназначен для коммутации электрических цепей под нагрузкой в нормальных и аварийных режимах.

-          Разъединитель предназначен для включения и отключения под напряжением участков электрической цепи при отсутствии тока нагрузки для токов воздушных и кабельных линий, токов холостого хода трансформаторов и токов небольших нагрузок, также для обеспечения безопасности работы на отключаемом участке или оборудовании путём создания видимого разрыва между токоведущими частями.

-          Ограничители перенапряжения предназначены для защиты изоляции токоведущих частей, изоляции силового оборудования и изоляции аппаратуры от коммутационных и атмосферных напряжений.

-          Трансформаторы тока предназначены для уменьшения величины тока до значений удобных для питания измерительных приборов и реле, также для изоляции цепей измерения и защиты от цепей высокого напряжения, возможность вывести измерительные приборы и реле на большие расстояния от места измерения в щитовую.

-          Трансформаторы напряжения предназначены для понижения высокого напряжения до стандартного и для отделения цепей измерения, учёта электроэнергии и релейной защиты от первичных цепей высокого напряжения.

-        Заградительный реактор предназначен для пропуска токов частотой 50 Гц к силовому трансформатору.

-        Конденсатор связи предназначен для пропуска токов частотой более 50 Гц к высокочастотному приёмо-передатчику.


Выбор аппаратуры и токоведущих частей подстанции. Расчёт максимальных рабочих токов основных присоединений подстанции


Для обеспечения надёжной работы аппаратуры и токоведущих частей электроустановки необходимо правильно выбрать их по условиям длительной работы в нормальном режиме и проверить для условий кратковременной работы в режиме к.з.

Выбор аппаратуры и токоведущих частей выполняются по номинальному току и напряжению .

где Iраб max – максимальный рабочий ток присоединения, в котором установлен аппарат, А;

Iном – номинальный ток аппарата, А;

Uуст – номинальное напряжение установки, кВ;

Uном – номинальное напряжение аппарата, кВ.

Максимальный рабочий ток вводов транзитной ТП:


,


где Sном тр Σ – суммарная номинальная мощность силовых трансформаторов, кВА;

kпр – коэффициент перспективы (kпр=1,3);

kтр – коэффициент транзита (kтр=2 для опорных ТП).

Расчёт максимального рабочего тока вводов транзитной ТП, А:



,

 

где kрн1 – коэффициент распределения нагрузки по шинам первичного напряжения (kрн1=0,75).

 

Расчёт максимального рабочего тока сборных шин транзитной ТП, А:


(2.

 Максимальный рабочий ток сборных шин транзитной ТП:



Максимальный рабочий ток сборных шин СН и НН:


,

(2.1.6)


где kрн2 – коэффициент распределения нагрузки на шинах вторичного напряжения (kрн2=0,6).

Расчёт максимальных рабочих токов сборных шин СН и НН, А:


,

.


Максимальный рабочий ток фидеров районных потребителей:


, (2.1.7)


где Sф max – полная мощность потребителя, кВА;

Uном (35,10) – номинальное напряжение соответствующее напряжению фидера районного напряжения, кВ.

Расчёт максимальных рабочих токов фидеров районных потребителей, А:


Максимальный рабочий ток фидера контактной сети 2×27,5 кВ принимаем, А:

.

(2.1.8)


Максимальный рабочий ток обмоток ВН и НН районного трансформатора,


,

(2.1.9)


Расчёт максимальных рабочих токов обмоток ВН и НН районного трансформатора, А:


,

,


Максимальный рабочий ток сборных шин 10 кВ:


,

(2.1.10)


Расчёт максимального рабочего тока сборных шин 10 кВ, А:


.


Максимальные рабочие токи в цепи ввода трансформатора собственных нужд (ТСН):


,

(2.1.11)



где Sном ТСН – номинальная мощность ТСН, кВА;

Uном 1(2) – номинальное напряжение первичной (вторичной) обмотки ТСН, кВ.

Расчёт максимальных рабочих токов в цепи ввода трансформатора собственных нужд (ТСН), А:

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.