рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Расчет электрической подстанции

Наибольшие токи К.З. в нашей схеме могут возникнуть при отключенных секционных выключателях. Рассмотрим этот режим, определим токи К.З. в точках К-1, К-2. Ток К.З. в точке К-3 определяется на шинах 0,38 кВ ТП.

Для расчета токов короткого замыкания в точках К-1, К-2, К-3 необходимо определить индуктивные сопротивления всех элементов схемы. Определим сопротивления всех элементов схемы рисунков 1.5 и 1.6, приведем их к базисному напряжению 115 кВ

Данные для расчета токов К.З.


UH = 110 кВ,

Sб = 100 МВА,

Sк = 630 МВА,

Х0 = 0.4 Ом/км, L = 20 км;

UH = 110 кВ,

Sн = 6,3 МВА.


Расчет сопротивлений элементов схемы произведем по формулам:


 (1.15)

 (1.16)

 (1.17)


Расчет сопротивлений элементов схемы:


,

,


Произведем расчет токов короткого замыкания в точке К1 по формулам:  (1.18)


 (1.19)

 (1.20)

,


Мощность в точке короткого замыкания:


 (1.21)


Найдем ударный ток в точке К1 по формуле:


 (1.22)

Куд=1,8 2

Произведем расчет токов короткого замыкания в точке К2 по формулам:


 (1.23)

 (1.24)

 (1.25)


Произведем расчет токов короткого замыкания:


,

,

 


Мощность в точке короткого замыкания:


 (1.26)


Найдем ударный ток в точке К2 по формуле (1.35):


Куд=1,92

Расчет максимального тока произведем по формуле:


1.27)

Imax=0.8*10132/*110=43,3 кА


Расчеты устойчивого, ударного токов короткого замыкания и мощности короткого замыкания в точках К1, К2 приведены в таблице 1.7.


Таблица 1.7–Расчетные токи К.З.

№ п/п

Uн, кВ

Та

Куд

I(3)к, кА

iуд, кА

Sк, МВА

К1

110

0,05

1,8

5,82

14,8

116,3

К2

6,3

0,03

1,65

1,8

3,6

32,7

1.5 Выбор электрооборудования подстанции

1.5.1 Выбор токоведущих частей

Произведем выбор токоведущих частей. Подстанция получает питание по воздушной двухцепной линии электропередач 110 кВ. При выборе сечения проводов необходимо учитывать ряд технических и экономических факторов:

- нагрев от длительного выделения тепла рабочим током;

- нагрев от кратковременного выделения тепла током К.З.;

- падение напряжения в проводах воздушной линии от проходящего тока в нормальном и аварийном режимах;

- механическая прочность — устойчивость к механической нагрузке (собственный вес, гололед, ветер);

- коронирование — фактор, зависящий от величины применяемого напряжения, сечения провода и свойств окружающей среды.

Расчет проводов для линий электропередач 110 кВ проведем по экономии-ческой плотности тока jэк [3.]. При расчете по экономической плотности тока сечение проводов выбирается по выражению


 (1.28)


где jэк = 1,4 А/мм2- экономическая плотность тока.

Тогда, по (1.5) для линии электропередач 110 кВ сечение равно:


 мм2

 

По полученным значениям выбираем марку провода. Для двухцепной линии напряжением 110 кВ выбираем номинальное сечение провода и марку:

АС –95 Для окончательного обоснования выбора данной марки провода необходимо проверить по допустимой потере напряжения.


  (1.29)

 (1.30)

 (1.31)

 (1.32)

 (1.33)


где P- активная мощность, кВт; Q- реактивная мощность, кВар; R-активное сопротивление линии, Ом/км; X-индуктивное сопротивление линии, Ом/км; U – напряжение сети, кВ.

Используя формулу (1.42) определяем потерю напряжения для линии:

 В


Определим допустимую потерю напряжения в линии. Допускается потеря напряжения в линии не более 7%:


 (1.34)


Допустимая потеря напряжения в линии:


 %


Как видно из расчета рассчитанное значение потерь напряжения в линии намного меньше допустимых потерь напряжения, это объясняется малой длиной линии, следовательно, данный провод подходит.


1.5.2 Выбор выключателей

Комплектные распределительные устройства (КРУ) предназначены для приёма и распределения электроэнергии трёхфазного переменного тока промышленной частоты, состоят из набора типовых шкафов в металлической оболочке. В шкафы комплектного распределительного устройства встраивают выключатели, трансформаторы напряжения, разрядники.

Выбор выключателей производится по следующим условиям: по напряжению установки, по длительному току, по отключающей способности, по электродинамической стойкости, по термической стойкости. Формулы для расчетов приведены ниже:

Uуст £ Uн (1.35)

 Iр £ Iн (1.36)

Iмакс £ Iн (1.37)

Iк £ Iотк.н. (1.38)

iуд. £ iдин (1.39)

Вк £ I2тер · tтер (1.40)


Параметры выбора разъединителей, отделителей и короткозамыкателей на напряжение 110 кВ сведены в таблицу 1.8.


Таблица 1.8- Выбор разъединителей, отделителей и короткозамыкателей

Выбор обо-рудования

Условие

выбора

Расч. параметр эл. цепи

Каталожные данные оборудования

Короткоза-

мыкатели

Uном, с Ј Uном

Uном, с, кВ

110

Uном, кВ

110

Iу, с Ј Iу

Iу, с, кА

37

Iу, с, кА

51

Вк Ј I2 терЧ tтер

Вк, кАЧс

11

Iтер, кА

12,5/3

Отделители

Uном, с Ј Uном

Uном, с, кВ

110

Uном, кВ

110

Iном, с Ј Iном

Iном, с, А

181

Iном, А

630

Iу, с Ј Iу

Iу, с, кА

37

Iу, с, кА

80

Вк Ј I2 терЧ tтер

Вк, кАЧс

11

Iтер, кА

31,5/3

Разъеде-

нители

Uном. с Ј Uном

Uном. с, кВ

110

Uном, кВ

110

Iном, с Ј Iном

Iном, с, А

181

Iном, А

1000

Iп, с Ј Iп

Iп, с, кА

12

Iп, кА

31,5

Iу, с Ј Iу

Iу, с, кА

37

Iу, с, кА

80

Вк Ј I2 терЧ tтер

Bк, кАЧс

9

Iтер, кА

31,5/4

 

Выбираем электрооборудование: РЛНД – 1 – 110У – 100, ОД – 110 – 330, КЗ– 110.

Результаты выбора выключателей в КРУ сведем в таблицу 1.9


Таблица 1.9- Выбор выключателей на отходящих линиях

Условия выбора

Расчетные данные

Каталожные данные

Uуст £ Uн             

Uуст = 6,3кВ, кВ

Uн =10, кВ

Iр £ Iн

Iр = 15,9 , А

Iн = 160, А

Iк £ Iотк.н.

Iк=1,8, кА

Iотк.н. =20, кА

iуд. £ iдин

iуд. =20,5, кА

iдин = 52, кА

Вк £ I2тер * tтер

Вк , кА2* с

I2тер * tтер , кА2 *с


Выбираем выключатель ВМПЭ – 10 – 160-20, встроенный в КРУ

1.5.3 Выбор трансформатора тока

Трансформатор тока предназначен для уменьшения первичного тока до значений, наиболее удобных для измерительных приборов и реле.


Таблица 1.10-Приборы на стороне НН

Прибор

Тип

S прибора [B×A]

Амперметр

Э-377

0.1

Ваттметр

Д-305

0.5

Варметр

Д-305

0.5

Счетчик активной энергии

И 672М

5

Счетчик реактивной энергии

И 673М

5


Произведем расчет активного сопротивления по формуле :


 (1.41)


где Iн – вторичный ток прибора; SSпр – мощность, потребляемая приборами;


Полное сопротивление проводов:



Проводимость определим по формуле:


 (1.42)


По условию прочности сечения жил 4.3<6

Выбор трансформатора тока на сторону 6кВ занесены в таблицу 1.11.


Таблица 1.11-Выбор трансформатора тока

Параметры

Условие выбора

Расч. значение

Ном.значение

Uном, кВ

Uн ³ Up

6

6,3

Iном, А

Iн ³ Ip

70,9

300

Эл. стойкость, кА

Kэд/2×I1ном³ iуд

27,8

120

Вторичная нагрузка

Zном

0,65

1,1


Выбираем трансформатор тока ТШЛ – 10, встроенный в КРУН

Приборы на стороне ВН: Амперметр Э-377 мощность прибора S пр= 0,2B×A Произведем расчет активного сопротивления:



Полное сопротивление проводов:


Проводимость:



По условию прочности сечения жил 2,6<6

Выбор трансформатора тока на сторону 110 кВ занесены в таблицу 1.12


Таблица 1.12 –Выбор трансформатора тока

Параметры

Условие выбора

Расч. значение

Ном.значение

Uном, кВ

Uн ³ Up

110

110

Iном, А

Iн ³ Ip

134,4

300

Эл. стойкость, кА

Kэд/2×I1ном³ iуд

14,8

150

Вторичная нагрузка

Zном

0,99

1,1


Выбираем трансформатор тока ТВТ – 110-300/5, класса точности 0.5


1.5.4 Выбор трансформатора напряжения

Трансформатор напряжения предназначен для уменьшения первичного напряжения до значений, наиболее удобных для измерительных приборов и реле. Приборы присоединенные к трансформатору напряжения в таблице 1.13.


Таблица 1.13 -Приборы присоединенные к трансформатору напряжения:

Прибор

Тип

Вольтметр

Э-377

Ваттметр

Д-305

Варметр

Д-305

Счетчик активной энергии

И 672М

Счетчик реактивной энергии

И 673М

Суммарная мощность приборов: SS = 25 В*А

Данные выбора трансформатора напряжения занесены в таблицу 1.14


Таблица 1.14 –Выбор трансформатора напряжения

Параметры

Ус.выбора

Ном.значение

Расч.зн.

Uном, кВ

Uн ³ Up

10

6,3

Вторичная нагрузка

Sном ³ S2S

110

25


Выбираем трансформатор напряжения НТМИ – 10 – 66 УЗ:

Н – трансформатор напряжения;

Т – трехфазный;

М – с естественным масляным охлаждением;

И – для измерительных цепей;

0,5 – класс точности;


1.6 Релейная защита

1.6.1 Общие сведения. Назначение релейной защиты

В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии. Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы. Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит. Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.

Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи. Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо как можно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем ненормальные условия их работы и прекращая разрушения в месте повреждения. Поэтому возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов. Первоначально в качестве подобной защиты применялись плавкие предохранители. Затем были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения. При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.

1.6.2 Токовая защита

Защита, для которой воздействующей величиной является ток, называется токовой защитой. Этот вид защиты в системах электроснабжения получил наибольшее распространение. Первыми токовыми защитами были плавкие предохранители. Суть защиты плавким предохранителем заключается в том, что при протекании большого тока плавкая вставка разрушается и цепь разрывается. В токовых защитах применяются электромагнитные реле максимального и минимального тока. Реле максимального тока действует при превышении воздействующей величины тока срабатывания реле, а реле минимального тока — при снижении воздействующей величины менее тока срабатывания реле. Токовые защиты делятся на максимальные токовые защиты и токовые отсечки. Токовая отсечка — это защита, которая срабатывает мгновенно.


1.6.3 Токовая направленная защита

Направленной называется защита, которая действует при определенном направлении мощности короткого замыкания. Данный вид защиты применяется в сетях с двухсторонним питанием. Защита в этих сетях должна не только реагировать на появление тока короткого замыкания, но для обеспечения селективности должна также учитывать направление мощности короткого замыкания в защищаемой линии или, иначе говоря, фазу тока в линии относительно напряжения на шинах. Направление мощности короткого замыкания, проходящей по линии, характеризует, где возникло повреждение: на защищаемой линии или на других присоединениях, отходящих от шин данной подстанции. Это обстоятельство используется в токовой направленной защите, которая по знаку мощности определяет, на каком присоединении возникло повреждение, и действует только при коротком замыкании на защищаемом участке.

1.6.4 Дистанционная защита

Данный вид защиты применяется в сетях сложной конфигурации, например, кольцевая сеть с двухсторонним питанием. Выдержка времени дистанционной защиты зависит от расстояния между местом установки защиты и точкой короткого замыкания. При этом ближайшая к месту повреждения дистанционная защита всегда имеет меньшую выдержку времени, чем более удаленные защиты, благодаря этому автоматически обеспечивается селективное отключение поврежденного участка. Основным элементом дистанционной защиты является дистанционный орган, определяющий удаленность короткого замыкания от места установки защиты. В качестве дистанционного органа используются реле сопротивления, непосредственно или косвенно реагирующие на полное, активное или реактивное сопротивление линии.


1.6.5 Дифференциальная защита

Принцип действия дифференциальной защиты основан на сравнении величины и фазы токов в начале и конце защищаемого участка. Данная защита обеспечивает мгновенное отключение короткого замыкания в любой точке защищаемого участка и обладает селективностью при коротком замыкании за пределами защищаемой зоны. Дифференциальные защиты подразделяются на продольные и поперечные. Первые служат для защиты как одинарных, так и параллельных линий, вторые — только параллельных линий.


2. Экономическая часть

2.1 Расчет затрат труда


Расчет затрат труда, основных материалов, запасных частей и комплектующих изделий на проведение технического обслуживания и ремонта. Норма трудоемкости ремонтов и технического обслуживания аппаратов высокого напряжения определены на основании типовых объемов ремонтных работ для каждого вида оборудования и его параметрами – мощностью, конструктивным исполнением и их назначением с учетом опытных данных.

В электрических сетях, к которым относится подстанция в качестве руководства при проведении ремонта оборудования принята технологическая карта, в которой указаны состав бригады, основные затраты на ремонт, меры безопасности, последовательность операций, контрольные параметры.

Для примера в таблице 3.2 представлены выдержки из технологической карты на капитальный ремонт выключателей типа ВМПЭ-10, которые установлены в ЗРУ подстанции, по затратам труда, основных материалов, запасных частей и комплектующих изделий приведены в таблице 3.1,3.2


Таблица 3.1-Затраты основных материалов, запасных частей и комплектующих изделий при проведении ремонта выключателя

Материалы и запасные части

Кол-во

Смазка литол

0,1 кг

Машинное масло

0,2 кг

Трансформаторное масло

15 л

Шлифшкурка

0,25 см2

Ветошь

1 кг

Салфетки

2 шт

Материалы и запасные части

Кол-во

Краска красная, желтая, зеленая, серая

1 кг

Кисть

2 шт

Растворитель

0,25 л

Наконечник контактного стержня

3 шт

Розеточный контакт в сборе

1 шт

Ламель контактного контакта

1 шт

Дугогасительная камера

1 шт

Подвижной стержень

1 шт

Стекло маслоуказателя

1 шт

Нижнее кольцо дугогасительной камеры

3 шт

Прокладка маслоказателя

3 шт

Пружина розеточного контакта

5 шт

Страницы: 1, 2, 3


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.