рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Розвиток електричної мережі ВАТ "Львівобленерго"


За каталогом [4] вибираємо трансформатор струму типу ТПОЛ-10. Розрахункові і каталожні дані наведено в табл. 4.13.

Таблиця 4.13 - Вибір трансформатора струму НН

Розрахункові дані

Каталожні дані ТПОЛ-10

Uуст=10 кВ

Uном=10 кВ

Імах=274 А

І1ном=1500 А

іуд=4.379 кА

ідин=140 кА

Вк=0.846 кА2с

 кА2× с


Розраховуємо переріз контрольного кабеля для з’єднання трансформаторів струму з вимірювальними приладами. Визначаємо опір приладів за формулою:


,


де Sпр. – потужність, що споживається приладами найбільш завантаженої фази;

І2ном – номінальний струм вторинної обмотки трансформатора.

Допустимий опір проводів:


,


де опір контактів приймаємо = 0.1, для кількох приладів згідно [5],

Z2ном – номінальне допустиме навантаження трансформатора струму в вибраному класі точності.

Переріз з’єднувальних проводів визначається за формулою:


 ,


де ρ = 0,0283 – питомий опір матеріалу проводу;

lроз. = 40 м - відстань від трансформаторів струму ЗРП-10кВ до ЗПК;

 Ом;

rпров. = 0,6 – 0,24 – 0,1=0,26 Ом;

q = 0.0283∙40 / 0,26 = 4,354 мм2;

Вибираємо контрольний кабель АКВРГ з січенням жили 6 мм2.

Опір з’єднувальних проводів: Ом.

Опір навантаження Zнав.= rпров+ rпр. + = 0,189+ 0,24 + 0,1 = 0,529 Ом.

Перевірка вибраного трансформатора струму:

Z2ном.=0,6 Ом > Zнав.=0,529 Ом.

Трансформатор задовільняє умови перевірки.

В силові трансформатори вмонтовані трансформатори струму типу ТВТ 10-І-5000/5 з такими параметрами:

;

Uном=10 кВ;

Іном=1000 А;

4.4 Вибір обмежувачів перенапруг

Ізоляція силових і вимірювальних трансформаторів, а також інших електричних апаратів електричної підстанції не може протидіяти комутаційним і особливо грозовим перенапругам.

Останнім часом на заміну традиційних вентильних розрядників змінного струму прийшли нові електричні апарати високої напруги – обмежувачі перенапруг нелінійні (ОПН), які в порівнянні з розрядниками більш глибоко обмежують комутаційні та грозові перенапруги. Заміна вентильних розрядників на ОПН співпала з вичерпуванням ресурсів ізоляції електрообладнання. При цьому ефективне обмеження перенапруг за допомогою порівняно дешевих ОПН дає значний економічний ефект у зберігання ресурсів електроообладнання, що є особливо актуальним для України. Згідно Норм [3] вибираємо ОПН.


4.4.1 Вибір ОПН на стороні ВН

Згідно методики (книжка по вибору) для 35кВ:

- ;

- ;

- - коефіцієнт замикання на землю;

- максимальна тривалість тимчасового підвищення напруги = 10сек. ;

- необхідний номінальний струм ОПН ;

- необхідний клас розряду лінії = 1 ;

- клас ізоляції = 1 ;

- максимальний струм к.з. = 20кА.

Визначення мінімальної довготривало-допустимої і номінальної напруги:

;

;

;

 з мал.19 (книжка)

Визначення фактичної довготривалої і номінальної напруги:

 округлимо до кратного трьом = 33кВ ;

;

;

Коефіцієнт для розрахункового класу лінії = 1:

;

З цього випливає наступна характеристика захисту:

- рівень захисту від грозових перенапруг () = 95кВ ;

- рівень захисту від комутаційних перенапруг () = 74кВ ;

- рівень захисту від крутого імпульсу () = 101кВ .

Перевірка значень захисту:

 >1 – достатньо .

Довжина шляху стікання: .

Приймаємо ОПН : SIEMENS 3EP2-036-1PL1.

Такий же ОПН приймаємо для нейтралі трансформатора.


4.4.2 Вибір ОПН на стороні НН

Згідно методики (книжка по вибору) для 10кВ:

- ;

- ;

- - коефіцієнт замикання на землю;

- максимальна тривалість тимчасового підвищення напруги = 10сек. ;

- необхідний номінальний струм ОПН ;

- необхідний клас розряду лінії = 1 ;

- клас ізоляції = 1 ;

- максимальний струм к.з. = 20кА.

Визначення мінімальної довготривало-допустимої і номінальної напруги:

;

;

;

 з мал.19 (книжка)

Визначення фактичної довготривалої і номінальної напруги:

 округлимо до кратного трьом = 12кВ ;

;

;

Коефіцієнт для розрахункового класу лінії = 1:

;

З цього випливає наступна характеристика захисту:

- рівень захисту від грозових перенапруг () = 32кВ ;

- рівень захисту від комутаційних перенапруг () = 25кВ ;

- рівень захисту від крутого імпульсу () = 34кВ .

Перевірка значень захисту:

 >1 – достатньо .

Довжина шляху стікання: .

Приймаємо ОПН : SIEMENS 3EP2-012-1PL1.

4.5 Вибір шин та ошиновки підстанції


Збірні шини і ошиновку в ЗРП 6-10 кВ виконують жорсткими алюмінієвими шинами різних форм (прямокутного перерізу, пакети з двох та трьох шин, трубчаті квадрати та круглі, пакети з двох швелерів на фазу). Вибір шин визначається напругою, робочим струмом та іншими умовами. При робочих струмах до 2000 А в основному використовують шини прямокутного перерізу, при більших струмах – пакети з двох і трьох смуг на фазу, далі по мірі наростання струму – використовують шини коробчатого профілю. В РП напругою 35 кВ і вище використовуються гнучкі шини та ошиновку, які виконуються проводами АС. Вихідними даними для вибору гнучких та жорстких шин та струмопроводів підстанції є номінальна напруга РП, розрахункові струми тривалого робочого режиму, значення струмів коротких замикань.

4.5.1 Вибір гнучких шин на стороні ВН

Вибір шин виконуємо по допустимому струмові навантаження, за умови, що максимальне значення струму шини не буде перевищувати відповідне допустиме значення. Максимальне значення струму шини рівне більшому з значень максимально допустимого струму ліній, що приєднані до шин ВН підстанції та максимального струму підстанції (табл. 4.2.), що рівні 390 А та 188А відповідно.

Оскільки значення максимального струму лінії є більшим за значення максимального струму підстанції, то гнучкі шини виконуємо таким самим проводом, що і повітряні лінії (ПЛ), приєднані до шин високої напруги ПС «Добромиль-14», а саме АС-70/11.

Вибраний провід відповідає встановленим нормам з умов механічної міцності [6] тому перевірку на механічну міцність не виконуємо.

Виписуємо деякі дані сталеалюмінієвого проводу АС-70/11 [4]:

-       допустиме значення струму ― Ідоп = 265 А;

-       діаметр алюмінієвої жили ― Dпр = 11,4 мм.

Оскільки струм однофазного короткого замикання на шинах високої сторони складає 3,054 кА, що є менше 20 кА, то перевірку шин за умовами динамічної дії струмів КЗ виконувати непотрібно, згідно [14].

Гнучкі шини, виконані голими проводами на відкритому повітрі, на термічну дію струмів КЗ не перевіряється згідно [6].

Здійснюється перевірка на коронування згідно наведеної методки в [5].

Початкове значення критичної напруженості електричного поля визначається за формулою


,

де m=0.82 – коефіцієнт, який враховує нерівність поверхні проводу;

- радіус проводу.

Ео=30.3·0.82·(1+0.299/) = 34.686 кВ/см.

Напруженість електричного проводу навколо проводу:


,


де  кВ;

 середньо геометрична відстань між фазами

,

де D – відстань між сусідніми фазами, см.

 см.

Е= кВ/см.

Умова перевірки проводів на коронування:

1.07·Е  0.9·Ео,

 кВ/см  кВ/см- умови коронування задовільняються.


4.5.2 Вибір жорстких шин на стороні НН

Переріз жорстких шин вибираємо так само, як і для гнучких шин, за величиною допустимого струму.


,



де Iмах – максимальне значення струму шини у ремонтному або після-варійному режимі роботи мережі, для сторони НН Iмах = 0,274 (кА) (з табл. 4.2.); ІДОП – допустимий струм шини з врахуванням поправки на температуру, кА;

Користуючись довідниковими матеріалами [4], для сторони НН підстанції вибираємо однополосні алюмінієві шини прямокутного січення розміром 30×4, допустимий струм яких – Ідоп ном = 365 А.

Виконуємо перерахунок значення допустимого струму до температурних умов даної місцевості:

(А),

де Θ0.ном = 250C – номінальна температура навколишнього середовища для шини [5]; Θт.доп = 700С – тривало допустима температура шини [4]; Θ0 = 9,90С – середньорічна температура навколишнього середовища даної місцевості.

Перевіряємо вибраний тип шини на відповідність умові:

Умова виконується.

Вибрані шини перевіряємо на термічну і динамічну стійкість.


Перевірка шин на термічну стійкість

Перевірка на термічну стійкість при КЗ виконується відповідно умови:

де ΘК – температура шин при нагріванні струмом КЗ; ΘК.ДОП – допустима температура нагрівання шин при КЗ, для алюмінієвих шин згідно з [4] - ΘК.ДОП = 200 0C.

Для встановлення величини ΘК необхідно порахувати температуру провідника в нормальному режимі роботи.

0C.

По кривій [5] визначаю величину fH, яка характеризує тепловий стан провідника до моменту початку КЗ, і рівна fH = 29 0C.

Визначаю величину fK, яка характеризує кінцевий стан провідника в режимі КЗ.

де k - коефіцієнт, який враховує опір і ефективну теплоємкість провідника (згідно [5] для алюмінієвих шин k = 0,01054, (мм4×°С/(А2×с)); q – переріз шини, для вибраних нами шин рівний (мм2).

По кривих [5] знаючи fk знаходимо кінцеве значення температури провідника в режимі КЗ, яке рівне ΘК = 51 °С.

Оскільки ΘК = 51 °С < ΘК.ДОП = 200 °C то умова термічної стійкості виконується.

Перевірка шин на динамічну стійкість

Частота власних коливань для алюмінієвих шин визначається за формулою:


 ,



де l – довжина прогону між ізоляторами, м; J – момент інерції поперечного перерізу шини відносно осі, перпендикулярної до напрямку згинаючої сили, см4; q – поперечний переріз шини, см2.

З цієї формули визначаємо довжину прогону l за умови, що частота власних коливань буде більша 200 Гц. Для цього знайдемо найбільше значення, яке задовольняє нерівність:


 .



Розглянемо випадок, коли шини розміщені «на ребро», як показано на рис. 4.6.

Рис. 4.6 - Схематичне положення жорстких шин «на ребро»


Момент інерції шин розміщених «на ребро» визначається як:

( мм4),

де – h = 30 (мм) – висота шини; b = 4 (мм) – ширина шини.

Відповідно визначаємо довжину прогону для даного методу розміщення шин.

(м).

Розглянемо випадок, коли шини розміщені «пластом», як показано на рис. 4.7.


Рис. 4.7 - Схематичне положення жорстких шин «пластом»


Момент інерції шин, розміщених «пластом», визначається як:

( мм4),

де – h = 25 (мм) –ширина шини; b = 3 (мм) – висота шини.

Відповідно визначаємо довжину прогону для даного методу розміщення шин.

(м).

З розглянутих випадків вибираємо той, коли шини розміщені „пластом”, бо при цьому більша довжина прогону між ізоляторами. Тобто коли =0.866(м).

Найбільше динамічне зусилля при трифазному КЗ діє на провідник середньої фази. Його розраховують за формулою:

де  - коефіцієнт форми, оскільки відстань між сусідніми фазами значно більша від довжини шини по периметру поперечного перерізу, тому ; - значення ударного струму при трифазному короткому замиканні на стороні НН,  - відстань між сусідніми фазами [4], м.

Розраховуємо значення згинаючого моменту.

Розраховуємо значення моменту опору шини відносно осі, перпендикулярної до дії зусилля, для випадку розміщення шин в положенні „пластом”, відповідно до рис.4.7.

(м3),

Визначаємо величину напруження в матеріалі шини, що виникає в наслідок дії згинаючого моменту.

(МПа),

Виконуємо перевірку шин за умовою динамічної стійкості:

4.6 Вибір ізоляторів

В розподільних уставах струмоведучі частини відокремлюються від іншого обладнання, конструкцій і персоналу ізоляторами. Жорсткі шини закріплюються на опорних ізоляторах. Вибір опорних ізоляторів на стороні НН виконуємо по номінальній напрузі низької сторони ― 10 кВ, та перевіряємо по допустимому навантаженню.

За значенням номінальної напруги з каталогових даних [15] вибираємо полімерний ізолятор марки ОНШ-4-80-215-4.

UРП = 10 кВ = Uном.ізол. = 10 кВ.

Опорний ізолятор відповідає нормам по допустимому навантаженню, якщо виконується умова:


,



де Fрозр ― сила, що діє на ізолятор, Н; Fдоп ― допустиме навантаження на головку ізолятора, Н.

При горизонтальному розміщенні ізоляторів всіх фаз сила, що діє на ізолятор, розраховується як:

(Н).

Допустиме навантаження ізолятора визначається як:

 (Н),


де Fруйн = 4000 ― мінімальне значення згинаючої сили, при якій відбувається руйнація ізолятора [15], Н.

Перевіряємо ізолятор умови механічної міцності:

.

На високій стороні РУ, згідно [5], гнучкі шини приєднуємо до арматури підвісних ізоляторів марки ПС-6-А. Для забезпечення запасу механічної та електричної міцності підвісних ізоляторів, що призначені для жорсткого кріплення гнучких шин, їх кількість вибираємо на одиницю більшу від кількості зазначеної в таблиці [5], а саме 6.


4.7 Вибір трансформаторів власних потреб

Відповідно до вимог [3] на двотрансформаторних підстанціях встановлюються два трансформатори власних потреб з врахуванням резерву по потужності, але не більше 630 (кВА). Трансформатори власних потреб живлять системи різних рівнів відповідальності та з різною тривалістю споживання.

Склад споживачів власних потреб підстанції залежить від типу підстанції, потужності трансформаторів, типу електрообладнання.

Найбільш відповідальними споживачами власних потреб підстанції є оперативні кола, система зв’язку, телемеханіки, система охолодження трансформаторів, аварійне освітлення, система пожежогасіння.

Потужність споживачів власних потреб є невеликою, тому вони приєднуються до мережі 380/220 В, що отримує живлення від понижувальних трансформаторів.

Потужність трансформаторів власних потреб вибирається за навантаженням власних потреб з врахуванням коефіцієнтів завантаження і одночасності.

Основні споживачі власних потреб підстанції наведені в табл. 4.14.

Таблиця 4.14 - Перелік споживачів власних потреб

Вид споживача

Р, кВт

 Q, кВар

1

2

3

Охолодження ТМ-4000/35

2х2

-

Пристрій РПН трансформатора ТМ-4000/35

0,5х2

-

Живлення протиконденсатних обігрівачів

3

-

Зарядно-підзарядний агрегат

46

20.3

Зовнішнє освітлення

15

-

Живлення шафи ШОТ

10

9

Постійно ввімкені вимірювальні прилади

2

-

Перетворювальна апаратура для оперативного зв’язку

7.5

2.9

Вентиляцій, обігрів та освітлення ЗРП 10кВ

5

-

Вентиляцій, обігрів та освітлення ЗПК

20


Всього

113,5

32,2


Загальна потужність навантаження споживачів власних потреб

Sнав.вп =

Повна потужність навантаження споживачів власних потреб

де kп = 0.8 –коефіціент попиту згідно [5].

Вибираємо з [11] два трансформатори власних потреб типу: ТСР-100/10. Параметри трансформаторів власних потреб наведені в табл. 4.15.


Таблиця 4.15 - Параметри трансформаторів ВП

Тип

Sном, кВА

Напруга обмоток, кВ

Втрати, Вт

uк, %

іх,%

ВН

НН

Рк

Рх

ТСР-100/10

100

10

0,4

1700

440

4

3


Трансформатори власних потреб встановлюємо на кожну секцію шин 10 кВ по одному.

4.8 Вибір акумуляторної батареї


На підстанціях встановлюються акумуляторні батареї, необхідні для живлення кіл керування, сигналізації блокування аварійного освітлення, автоматики.

Згідно норм технологічного проектування [3] понижуючих підстанцій 110-35 кВ на підстанціях з оперативним постійним струмом рекомендується встановлювати одну акумуляторну батарею.

Число основних елементів акумуляторної батареї під’єднаних до шин в режимі постійної підзарядки:

елементи,


де  = 230 ― напруга на шинах ВП, В; = 2,23 ― напруга на клемах елементів акумуляторної батареї в режимі підзарядки, В.

Кількість елементів акумуляторної батареї в режимі максимального заряду визначається як:

 елементів,


де = 2,6 ― напруга на клемах елементів повністю зарядженої акумуляторної батареї, В.

В режимі аварійного розряду, коли напруга зменшується до 1,75 В, до них підєднується:

 елемент ,


де = 1,75 ― напруга на клемах елементів акумуляторної батареї в режимі аварійного розряду, В.

Необхідною умовою вибору акумуляторної батареї є необхідне значення струму в кінці півгодинного циклу розрядки. В нашому випадку цей струм становить , згідно (5) 25 А.

З каталога (16) вибираю свинцево-кислотну батарею фірми VARTA Vb2305. Її каталожні дані наведені в таблиці 4.16.

Таблиця 4.16 - Параметри акумуляторної батареї

Назва батареї

Ємність,

Струм в кінці 30хв розряду, при , А

Струм в кінці 10 год розряду, при , А

VARTA Vb2305

250

222

25,4


5.                ЗАХОДИ З ОХОРОНИ ПРАЦІ

Для забезпечення належного експлуатаційного і санітарно- технічного стану території, будівлі і споруди повинні бути виконані і підтримуватися в справному стані:

- системи відводу поверхневих і ґрунтових вод із всієї території енергопідприємства. Від будівель і споруд (дренажі, канави, водовідвідні канали);

- глушники шуму вихлопних трубопроводів, а також інші улаштування і споруди, призначені для локалізації джерел шуму і зниження його рівня до норми;

- мережі водопроводу, каналізації, дренажі, теплофікації, транспортні, газові і рідкого палива;

- джерела питної води, водоймища і санітарні зони, дороги, пожежні переїзди, під’їзди до пожежних гідрантів, водойм і градирень, мости, пішохідні дороги, переходи і інші;

- комплекс інженерно-технічних засобів охорони;

- системи блискавковідводів і заземлення.


5.1 Конструктивне виконання та розрахунок заземлюючих пристроїв

Всі металеві частини електроустановок, які в нормальному режимі роботи не знаходяться під напругою в результаті пошкодження ізоляції, необхідно надійно з’єднати із землею. Таке заземлення є захисним, оскільки його метою є захист обслуговуючого персоналу від небезпечної напруги дотику. Заземлення обов’язкове для всіх електроустановок напругою вище 500 В. В електричних злагодах заземлюються: корпуси електричних машин, трансформаторів, апаратів, вторинні обмотки трансформаторів струму, приводи електричних апаратів, каркаси розподільчих щитів, пультів і тд.

Заземлюючі пристрої для установки 35 кВ і вище виконують із вертикальних заземлювачів, з’єднувальних смуг, смуг прокладання вздовж рядів обладнання і вирівнюючих смуг прокладання в поперечному напрямі, які складають заземлюючу сітку.

Згідно ПУЕ [6] розрахунок заземлюючих пристроїв в мережах 35 кВ і вище проводиться по допустимому опорі заземлення Rз=0.5 Ом.

Виконуємо загальне заземлення для всієї площі території підстанції, площа якої становить 70 х 50 м.

Для часу t =0.2 с допустима напруга дотику Uдот. = 400 В[4].Для підстанції довжина горизонтальних полос заземлення становить:

При а = 5 м, довжина вертикального заземлювача L=5м; t =0.7; Sпс.= 3500 м.

Розрахункові опори верхнього та нижнього шарів землі (грунт – глина) згідно [4] ρ2=60 Ом∙м; ρ1= ρ2·Кс=60·2=120 Ом∙м, де Кс=2 для горизонтальних електродів.

М = 0.62 при відношенні ρ1/ρ2 = 2 згідно [4].

Товщина верхнього шару землі h1 = 2 м. Коефіціент дотику:

де b – коефіцієнт, що визначається в залежності від опору тіла людини

b = Rл/(Rл+Rс) = 1000/(1000+1.5∙500) = 0.57;

Потенціал на заземлювачі Uз = Uпр.доп/Кп = 400/0.145 = 2758,62 В, отже напруга на заземлювач Uз є в допустимих межах, тобто менша 10 кВ.

Розрахунковий струм замикання на землю:

Із =Іпо=3054 A


де Іпо - значення струму на шинах ВН підстанції під час однофазного короткого замикання.

Допустимий опір заземлючого пристрою:

Rз.доп. =Uз./Із. = 2758.62/3054 = 0,903 Ом.

Діючий план заземлюючого пристрою перетворюємо в квадратну розрахункову модель:

Страницы: 1, 2, 3, 4, 5, 6


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.