рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Реконструкция электроснабжения колхоза "Прогресс"


 кВА.


В послеаварийном режиме работы сети 0,4 кВ только для потребителей II категории надёжности (работает только Т1):

Рр1 = 112 кВт; Qр1 = 85 квар (см. табл. 2.1)

ΔРТ1 = 2,02 кВт; ΔQT1 = 7,01 квар.


Максимальная нагрузка на трансформатор Т1


 кВА.


Полученные данные расчетов сводим в таблицу 2.7.


Таблица 2.7 – Расчётные нагрузки с учетом реальных потерь в трансформаторах

nn

Параметр

Режим работы сети

Нормальный

Послеаварийный

Т1

Т2

Т1

Т2

1.

Активная мощность, Рр, кВт

112

72

112

-

2.

Активные потери, ΔРТi, кВт

2,02

2,02

2,02

-

3.

Реактивная мощность, Qp, квар

85

10

85

-

4.

Реактивные потери, ΔQTi, квар

7,01

7,01

7,01

-

5.

Мощность БК, Qбк, квар

75

75

75

-

6.

Полная мощность, Sp, кВА

146,5

76

146,5

-


2.5 Выбор и расчёт сечений линий электропередачи 0,4 кВ


Определение числа линий электропередачи 0,4 кВ

В настоящее время приняты следующие основные принципы построения схем внутреннего электроснабжения:

1.                Число отходящих от трансформаторной подстанции линий не должно превышать 4-х.

2.                Работа линий и трансформаторов должна быть раздельной, так как параллельная работа приводит к увеличению токов КЗ, удорожанию релейной защиты, особенно на коротких линиях внутри объекта.

3.                Воздушные линии напряжением 0,38 кВ располагают преимущественно вдоль одной стороны дорог.

Распределение электроэнергии по рекомендациям СН-174-75 может быть выполнено радиальной, магистральной или смешанной схемой. Выбор зависимости от территориального размещения нагрузок, их величины, от требуемой степени надёжности питания и других характерных особенностей проектируемого объекта.

В практике проектирования электроснабжения предприятий крупные и ответственные потребители обычно подсоединяются к источнику электроэнергии по радиальным схемам. Средние и мелкие потребители группируются, а их электроснабжение проектируется по магистральному принципу. Такое решение позволяет создать схему внутреннего электроснабжения с наилучшими технико-экономическими показателями.

Основываясь на принципах построения внутренних сетей предприятия и учитывая особенности проектирования электроснабжения фермы, принимаем смешанную схему сети 0,38 кВ из 4-х линий. Две линии (схема на рис. 2.3) 1 и 4 от трансформатора Т1 питают 4 коровника (потребители II категории №№ 2, 4 и 15), родильное отделение (№3), телятник (№8) и водонасосную станцию (№14). Другие две линии 2 и 3 снабжают электроэнергией сенохранилище и хранилище сочных кормов (потребители №13 и 11), весовую, 3 телятника, откормочное и конюшню (№ № 5-7, 9, 10) от Т2.

Выбор расчётной схемы сети 0,38 кВ и расчёт нагрузок линий

Расчётную схему линий 0,38 кВ составим для дневных нагрузок, используя генплан фермы на рис. 2.2, и покажем на рисунке 2.3.

С учётом коэффициента ко одновременности активную расчётную нагрузку i-й линии определим по выражению:


РЛ.i = ко·,(2.11)


где РД.iдневная нагрузка i-го потребителя в данной линии. Если нагрузки потребителей различаются более чем в 4 раза, наименьшие нагрузки РД.j складываем без учёта коэффициента одновременности в соответствии с формулой:


РЛ.i = ко·+.(2.12)


Полная расчётная мощность определяется с учётом коэффициента мощности нагрузок


Sр = РЛ.i/cosφ.(2.13)


В соответствии с расчётной схемой определим расчётные нагрузки линий.


Линия 1:ко = 0,85;cosφ14,15 = 0,78;

РЛ.1 = 0,85(10 +20) = 25,5 кВт;

SрЛ1 = 25,5/0,78 ≈ 33 кВА.

Линия 2: ко = 0,85;cosφ13 = 0,78; cosφ11 = 0,86;

РЛ.2 = 0,85(10 + 5)= 12,8 кВт;

SрЛ2 = 8,5/0,78 +4,25/0,86 ≈ 16 кВА.

Линия 3:ко = 0,8;cosφ6,7,12 =1; cosφ5,9 = 0,86;

РЛ.3 = 0,8(10+5+5)+(3 +1) = 20 кВт;

SрЛ3 =10+10/0,86+3+1 ≈ 28 кВА.

Линия 4:ко=0,85; cosφ1,3=1; cosφ2=0,82; cosφ4=0,78; cosφ8=0,86;

РЛ.4 = 0,85(45+20)+(6 +6 +5) = 72,25 кВт;

SрЛ4 =6+6+45/0,82+20/0,78+5/0,86 ≈ 88 кВА.


Линию 1, проходящую вблизи воздушных линий 10кВ, выполним кабелем, чтобы избежать пересечения воздушных линий. Остальные линии принимаем воздушными линиями электропередачи.

Выбор сечения проводов и расчёт потерь напряжения

Прокладку кабеля по территории фермы осуществляем в воздухе. Предусматриваем применение кабеля марки ААШв с алюминиевыми жилами в алюминиевой защитной оболочке с наружным покровом из поливинилхлоридного шланга.

Выбор сечения кабельной линии осуществляем по экономической плотности тока iэк с дальнейшей проверкой по техническим условиям. К техническим условиям относят проверку сечений по нагреву расчётным током в режиме наибольших нагрузок и послеаварийном режиме.

Нестандартное экономически целесообразное сечение кабеля Fэ выбираем по экономической плотности тока по формуле:


FЭ = Ip/iЭк,(2.14)


гдеIр – расчётный ток кабельной линии, А.

Согласно ПУЭ [3] при годовом максимуме нагрузки Тмакс< 5000 ч и использовании в качестве проводника – алюминия iЭк =1,4 А/мм2.

Расчётный ток кабельной линии определяем по формуле:


, А(2.15)

гдеSp – полная расчётная мощность электроприёмников в линии, кВА.

Расчётный ток линии 1

= 50,1 А.


Сечение жилы кабеля линии 1

FЭ.Л1 = 50,1/1,4 = 35,8 мм2.


Полученное значение сечения жилы округляем до меньшего стандартного значения. Принимаем [2] FЭ.ст= 35 мм2 (r0=0,89 Ом/км; х0=0,064 Ом/км).

Так как кабель проложен в воздухе, то для данного сечения кабеля

Iдоп = 65 А.

Найденное по справочнику сечение проверяем по нагреву.

В нормальном рабочем режиме:


Кt· КаIдоп Iр,(2.16)


гдеКt – коэффициент учёта температуры среды, отличной от расчётной;

Ка – коэффициент учёта расстояния в свету между кабелями, проложенными рядом и их количеством;

Iдоп – длительный допустимый ток для кабеля, А.

Принимаем Кt=1, т.к. длительно допустимая температура жилы кабеля с бумажной изоляцией на напряжение 0,66 кВ составляет +650С, а температура среды составляет +15о С. Тогда в соответствии с формулой (2.16) имеем

65А > 50А,

следовательно, сечение жил кабеля проходит в нормальном рабочем режиме. В послеаварийном режиме, учитывая возможность 30 % перегрузки линии:


1,3 Кt· КаIдоп Iп/ав,(2.17)


гдеIп/ав – максимальное значение тока кабеля в послеаварийном режиме, которое определяется для однотрансформаторной подстанции с резервированием формулой:


.(2.18)


Максимальное значение тока кабеля в послеаварийном режиме

 ≈ 60 А.


Условие (2.17) для послеаварийного режима

1,3·65 = 84,5 А > 60 А.


Данное условие также выполняется.

К техническим условиям относят также проверку по потере напряжения:

-                     в рабочем режиме:


 ≤ 5%(2.19)


-                     в послеаварийном режиме:

 ≤ 10%(2.20)


гдеl – длина кабельной линии, км;

х0, r0 – удельные активное и индуктивное сопротивления жилы кабельной линии, Ом/км.

Находим потерю напряжения в кабеле в рабочем и послеаварийном режимах:


 = 2,1% < 5%.


Проверка сечений по термической стойкости проводится после расчётов токов короткого замыкания.

Далее определяем потери в кабельной линии:

-активной мощности


, кВт(2.21)


-реактивной мощности


, квар(2.22)


-активной электроэнергии


, МВтч/год,(2.23)


где  - потери в изоляции кабеля, определяемые как


.(2.24)

Так как,  - величина сравнительно небольшая и в расчётах учитывается только при высоких напряжениях;

t - время максимальных потерь, определяемое по формуле:


, ч(2.25)


где Тм=4500 ч – для двухсменной работы при продолжительности смены равной 8 часов. Тогда  ч.

Определяем потери активной мощности в кабельной линии 1:

Ркл1 = 3·50,1·0,12·0,89 = 0,016 кВт.


Потери реактивной мощности в этой же линии 1:

Qкл1 = 3·50,1·0,12·0,064 = 0,001 вар.


Потери активной электроэнергии в кабельной линии 1:

ΔWКл1 = 0,016·2846 = 45,5 кВт·ч/год.


Рассчитаем сечения проводов воздушных линий электропередачи и потери напряжения в них, используя для участка линии формулу:


ΔUучастка = ΔUуд·Sрасч.участка·lучастка.


Принимая провод 3А35+А35 (r0 = 0,83 Ом/км) для участка ΔU2-1-11 и провод 3А50+А50 (r0 = 0,588 Ом/км) для остальных участков, рассчитаем потери напряжения на участках линии 2:

ΔU2-1-11= 0,83·5·0,104 = 0,43%;

ΔU2-2-1 = 0,588·16·0,132 = 1,24%;

ΔU2-2-1-13 = 0,588·10,9·0,031 = 0,2%.


Наибольшая потеря напряжения в линии 2 составит сумму потерь на участках:


ΔU2макс = ΔU2-2-1+ ΔU2-1-11;

ΔU2макс = 1,24+ 0,43 = 1,67% < ΔUдоп= 5%.


Следовательно, выбранные сечения проводов удовлетворяет условию по допустимой потере напряжения в линии 2. Принимаем провод 3А35+А35 на участках ΔU3-3-9, ΔU3-3-7, ΔU3-3-6, ΔU3-2-5, ΔU3-1-12, остальные участки выполним проводом 3А50+А50 (r0 = 0,588 Ом/км). Потери напряжения на участках линии 3:

ΔU3-3-9= 0,83·4,6·0,036 = 0,14%;

ΔU3-3-7 = 0,83·10·0,025 = 0,21%;

ΔU3-3-6 = 0,83·3·0,015 = 0,04%;

ΔU3-2-3-3= 0,588·17,6·0,062 = 0,64%;

ΔU3-2-5 = 0,83·4,7·0,085 = 0,33%;

ΔU3-1-3-2 = 0,588·27,2·0,105 = 1,68%;

ΔU3-1-12 = 0,83·0,8·0,016 = 0,01%;

ΔU3-3-1 = 0,588·28·0,121 = 1,99%.


Наибольшая потеря напряжения в линии 3 состоит из потерь на участках:


ΔU3макс = ΔU3-3-1+ ΔU3-1-3-2+ ΔU3-2-3-3+ ΔU3-3-7;

ΔU3 = 1,99 + 1,68 + 0,64 + 0,21 = 4,52% < ΔUдоп= 5%.

Принимаем провод 3А70+А70 (r0 = 0,42 Ом/км) для участков ΔU4-4-1, ΔU4-1-4-2, ΔU4-2-4-2-1, ΔU4-2-1-2-2, для ΔU4-1-2, ΔU4-1-2 и ΔU4-2-2-4 - провод 3А50+А50 и провод 3А35+А35 - для ΔU4-2-2-8, ΔU4-2-1-3. Тогда потери напряжения на участках линии:

ΔU4-2-2-8= 0,83·5·0,049 = 0,20%;

ΔU4-2-2-4 = 0,42·21,8·0,042 = 0,38%;

ΔU4-2-1-2-2 = 0,42·26,8·0,038 = 0,43%;

ΔU4-2-1-3= 0,83·6·0,042 = 0,21%;

ΔU4-2-4-2-1 = 0,42·32,8·0,121 = 1,67%;

ΔU4-2-1 = 0,588·6·0,015 = 0,05%;

ΔU4-1-4-2 = 0,42·38,8·0,095 = 1,55%;

ΔU4-1-2 = 0,588·46,7·0,035 = 0,96%;

ΔU4-4-1 = 0,42·85,5·0,046 = 1,65%.


Наибольшая потеря напряжения в линии 4 складывается из потерь на участках:


ΔU4макс = ΔU4-4-1+ ΔU4-1-4-2+ ΔU4-2-4-2-1+ ΔU4-2-1—2-2;

ΔU4 = 1,65 + 1,55 + 1,67 + 0,43 = 4,47% < ΔUдоп= 5%.


2.6 Конструкция линий электропередачи напряжением 0,38 кВ


Для воздушных линий принимаем железобетонные опоры на основе стойки СВ-10,5-5 (длина стойки 10,5м и допустимый изгибающий момент не более 5т·м). Глубину заложения опор в грунт принимаем равную 2,5 м.

Пролёты между опорами возушных линий принимаем:

·                   для проводов А70 - 37 м;

·                   для проводов А50 – 40 м;

·                   для проводов А34 – 45 м,

 длины ответвлений к вводам в здания – не более 10м.

Крепление проводов выполним на изоляторах ТФ-20. Крепление проводов на промежуточных опорах выполним проволочными скрутками, а на концевых опорах – зажимами плашечными типа ПА.

Траверсы присоединяем проводниками диаметром 6 мм к нулевому проводу посредством зажимов ПА.

Для заземления опор используем один из стежрней стойки, к которому с двух сторон привариварены заземляющие элементы.

В качестве шинопроводов 0,4 кВ принимаем шинопровод ШРА73-400 с параметрами:

Iн ≤ 400А, Uн = 380 В,

rф= 0,15мОм/м,

 хф=0,17мОм/м,

rN=0,162мОм/м,

хN=0,164мОм/м,

lш=0,7м.


Повторные заземления нулевого провода принимаем Rп.з.≤ 30 Ом.



3. Выбор оборудования и защиты линий сети электроснабжения

3.1 Выбор предохранителей в сети 0,38 кВ и проверка защиты

Предохранители для линий 0,38 кВ выбираем по напряжению сети и рабочему току в начале линии из условий:


Uпр ³ Uсети и Iпр ³ Iл.(3.1)


Параметры линий и выбранных [4] предохранителей сводим в таблицу 3.1.


Таблица 3.1 - Параметры предохранителей в сети 0,38 кВ

Линия

Рабочий ток

линии Iл, А

Параметры предохранителя

Тип

Номинальный ток предохранителя,

А

Номинальный ток плавкой

вставки,

А

Предельный ток отключения при

U =380 В, кА

1

50,1


ПП 40

(ТУ16-90 ИГПН 646727.001ТУ)



25-630

63



200

2

24,3

40

3

42,6

63

4

130

160


Как следует из таблицы 3.1, выбранные предохранители удовлетворяют условиям (3.1). Для проверки предохранителей на отключающую способность и быстродействие необходимо определить возможные максимальные и минимальные токи короткого замыкания.


3.2 Расчёт токов короткого замыкания в сети 0,38 кВ


Составим схему замещения линии 1 электропередачи сети 0,38 кВ. Намечаем на схеме замещения расчётные точки 1 и 14. В точке 15 ток однофазного КЗ не учитываем, т.к. он заведомо больше, чем в точке 14 (длина участка до т. 15 короче, чем до т.14). Рассчитываем параметры схемы замещения линии 1.

Сопротивления прямой последовательности трансформатора [4], приведённые к ступени низшего напряжения


rT1 = 17,5 мОм;

хТ1 = 41,5 мОм.

 

Активное и индуктивное сопротивления нулевой последовательности трансформатора Т1, обмотки которого соединены по схеме «звезда-звезда с нулем», принимаем по данным таблицы п.5.3 [4]

 

rT0 = 10 rT1 =175 мОм;хТ0 = 7 хТ1 =290,5 мОм.

 

Сопротивления прямой последовательности с учётом двух болтовых соединений на фазу шинопровода ШРА73-400:

rш1 = 0,006·2 + 0,15∙0,7 = 0,012 + 0,105 = 0,1117 мОм;

хш1 = 0,17∙0,7 = 0,119 мОм.

 

Активное и индуктивное сопротивления нулевой последовательности фазы шинопровода принимаем по рекоменциям [4] как

rш0 = rш1 + 3rN = 0,105 +3·0,162 = 0,591 мОм;

хш0 =7,5 хш1 = 7,5·0,119 = 0,893 мОм.

Активное и индуктивное сопротивления прямой последовательности участка 1-2 кабельной линии с жилами А35 (r0 = 0,89 Ом/км, х0 = 0,064 Ом/км):

r1-21 = 0,89·0,09 = 80 мОм;

х1-21 = 0,064·0,09 = 5,8 мОм.


Полное сопротивление нулевой последовательности участка 1-2 из кабеля ААШв (табл.п.6.13 [4]):

z1-20 = 1,83·0,09 = 164,7 мОм.


Для участка 2-14 кабельной линии:

r2-141 = 0,89·0,033 = 29,4 мОм;

х2-141 = 0,064·0,033 = 2,1 мОм;

z2-140 = 1,83·0,033 = 60,4 мОм.


Определяем сопротивления прямой последовательности до точки 1

R1Σ = 17,5 + 0,117 = 17,62 мОм;

Х1Σ = 41,5 + 0,119 = 41,62 мОм


и рассчитываем ток трёхфазного КЗ в этой точке 1:


IКЗ.макс = 5,1 кА.


Проверяем предельную отключающую способность предохранителя ПП 40 с предельным током вставки Iпр = 200 кА:

Iпр ≥ ;(3.2)

 

Iпр = 200 кА ≥ ·1,5·5,1 = 10,8 кА.

Условие (3.2) выполняется, значит, выбранный предохранитель ПП 40 при максимальном расчётном токе КЗ не разрушится. Рассчитаем минимальный ток КЗ в точке 14. Суммарные сопротивления линии до точки 14 равны

r1Σ = 17,62 + 29,4 = 47,02 мОм;

х1Σ = 41,62 + 2,1 = 43,72 мОм;

z = 164,7 + 60,4 = 225,1 мОм.


Ток однофазного КЗ в точке 14 будет равен

2,4 кА.


По графику время - токовой характеристики плавкой вставки (рис.6.2 [4]) принятый предохранитель при токе 2,4 кА разорвёт цепь за 0,05 с. Следовательно, выбранный предохранитель ПП 40 проходит.

Проверим чувствительность и быстродействие защит линий 4, 2 и 3 предохранителями ПП 40 с плавкими вставками на 160А, 40А и 63А.

Сопротивления прямой последовательности до точек «0» линий:

R1Σ = 17,5 + 0,117 = 17,62 мОм;

Х1Σ = 41,5 + 0,119 = 41,62 мОм


и рассчитываем ток трёхфазного КЗ в этой точке «0»:

IКЗ.макс = 5,1 кА.


Предельная отключающая способность предохранителей ПП 40 с предельным током Iпр = 200 кА:

 

Iпр = 200 кА ≥ ·1,5·5,1 = 10,8 кА.


Предохранители выбраны правильно по предельной отключающей способности и не разрушатся при максимальном токе КЗ


Таблица 3.2–Результаты расчёта параметров схем замещения ВЛ0,4 кВ

Элемент

цепи

Сопротивления прямой

последовательности, мОм

Сопротивления обратной

последовательности, мОм

активное

реактивное

активное

реактивное

Трансформатор

17,5

41,5

175

290,5

Шины РУ 0,4

0,117

0,119

0,591

0,893


Участки

линии

№ 2

 r0=0,588 Ом/км

77,6

x0=0,297 Ом/км

39,2


1,18


0,62

а13

 r0=0,588 Ом/км

11,7

x0=0,297 Ом/км

6,2

а11

 r0=0,83 Ом/км

86,3

x0=0,308 Ом/км

32,0

1,7

0,64



Участки

линии

№ 3

r0=0,588 Ом/км

71,1

x0=0,297 Ом/км

35,9


1,18


0,62

аб

r0=0,588 Ом/км

63,5

x0=0,297 Ом/км

32,1

бв

r0=0,588 Ом/км

36,5

x0=0,297 Ом/км

18,4

а12

r0=0,83 Ом/км

13,3

x0=0,308 Ом/км

4,9



1,7



0,64

б5

r0=0,83 Ом/км

70,5

x0=0,308 Ом/км

26,2

в6

r0=0,83 Ом/км

12,4

x0=0,308 Ом/км

4,6

в7

r0=0,83 Ом/км

20,7

x0=0,308 Ом/км

7,7

в9

r0=0,83 Ом/км

29,9

x0=0,308 Ом/км

11,1




Участки

линии

№ 4

r0=0,42 Ом/км

19,3

x0=0,283 Ом/км

13,0



0,84



1,62

аб

r0=0,42 Ом/км

39,9

x0=0,283 Ом/км

26,9

бв

r0=0,42 Ом/км

51,2

x0=0,283 Ом/км

34,5

вг

r0=0,42 Ом/км

16,0

x0=0,283 Ом/км

10,7

г4

r0=0,42 Ом/км

17,6

x0=0,283 Ом/км

11,9

а2

 r0=0,588 Ом/км

21,8

x0=0,297 Ом/км

11,0

1,18

0,62

б1

r0=0,83 Ом/км

12,4

x0=0,308 Ом/км

4,6


1,7


0,64

в3

r0=0,83 Ом/км

34,9

x0=0,308 Ом/км

12,9

г8

r0=0,83 Ом/км

40,7

x0=0,308 Ом/км

15,1

Страницы: 1, 2, 3, 4, 5, 6


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.