рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Рентгеноструктурний аналіз молибдену

Диференціальний переріз розсіювання на вільному ядрі визначається по формулі


 (65)


За відсутності у ядра резонансних рівнів, достатньо близьких до енергії падаючого нейтрона, резонансним членом можна знехтувати. В цьому випадку амплітуда розсіювання визначатиметься чисто потенційним членом, який завжди позитивний і рівний радіусу r ядра:


dσi = f2ndΩ σi = 4πr2 (66)

На підставі останньої формули можна укласти, що потенційне пружне розсіювання повільних нейтронів відбувається як би на непроникних сферах того ж радіусу, що і ядро. Оскільки радіус ядра r = 1,5•10-15(A)1/3 [м] [м], де A—атомна маса ядра, те значення σi може бути обчислене для будь-якого елементу. Співвідношення (66) добре виконується для важких елементів. Для легких атомів спостерігається відхилення від цієї залежності.

При наближенні енергії падаючих нейтронів до значення енергії резонансного рівня ядра другий доданок в (64) стає достатньо великим, щоб переважати над потенційним членом. При цьому різниця E—Ep може бути як позитивною, так і негативною. Для H, Li і Мn резонансний член, будучи негативним, переважає над потенційним, приводячи, таким чином, до негативної амплітуди розсіювання. Якщо ядро володіє спином j, то результат складання його із спином падаючого нейтрона, рівним ±1/2, може привести до утворення складених ядер із спинами відповідно j + 1/2 і j — 1/2; В цьому випадку розсіювання повільних нейтронів на вільному ядрі описуватиметься не одній, а двома амплітудами розсіювання: f + і f —. Перша амплітуда відповідає паралельній взаємній орієнтації спинів ядра і падаючого нейтрона, друга — антипаралельної орієнтації спинів. При цьому диференціальний переріз розсіювання


 (67)


Множники при f2 + і f2 —. визначають вірогідність реалізації різних станів спинів системи з нейтрона і ядра при їх зіткненні.

Формула (67) показує, що розсіювання повільних нейтронів на вільних ядрах повністю визначається значенням амплітуд f + і f —. які можуть бути знайдені експериментально. Якщо в розсіянні нейтронів бере участь система зв'язаних ядер, то амплітуда розсіювання на вільному ядрі повинна бути замінена амплітудою розсіювання на зв'язаному ядрі. У разі одноатомної речовини fn → b = f(1 + 1/A). Дослідження показують, що амплітуди розсіювання повільних нейтронів для різних ядер знаходяться в інтервалі від 0,3•10-14 до 1•10-14 см, що відповідає інтегральному перетину розсіювання σ ≈ 10-28м2. Це майже на два порядки більше відповідної величини для рентгенівського проміння.

Якщо в розсіянні бере участь не одне ядро, а деякий колектив ядер, то розсіювання повільних нейтронів матиме когерентну і некогерентну складові. Когерентне розсіювання викликається впорядкованим розташуванням ядер. У некогерентному розсіянні ядра беруть участь неузгоджено, що говорить про безлад в розташуванні ядер. Наявність у нейтрона магнітного моменту приводить до магнітного розсіювання нейтронів речовиною. Якщо магнітні моменти атомів або іонів розсіювача орієнтовані хаотично (парамагнетіки), то магнітне розсіювання має дифузний характер. Якщо ж останні мають впорядковану орієнтацію (феромагнетики і антиферомагнетики), то магнітне розсіювання повільних нейтронів є когерентним і разом з ядерним когерентним розсіюванням вносить внесок в загальне розсіювання. Аналіз даних по розсіянню нейтронів дає пряму інформацію про розподіл і орієнтацію магнітних моментів атомів в досліджуваній речовині, що неможливо одержати інакше. На мал. 2.10 показані атомні амплітуди когерентного розсіювання рентгенівського випромінювання, електронів і нейтронів. Найсильніша залежність атомної амплітуди від кута розсіювання у електронів, менш сильна — у рентгенівського випромінювання і зовсім вона відсутня у повільних нейтронів. Це враховується при постановці і проведенні структурних досліджень.


Істотно, що амплітуди розсіювання рентгенівського випромінювання і електронів однакові для всіх ізотопів даного елементу, тоді як амплітуди розсіювання нейтронів fn для різних ізотопів різні. Завдяки цьому повільні нейтрони служать виключно зручним засобом вивчення структури твердих тіл і рідин, що містять атоми з дуже близькими або достатньо далекими порядковими номерами; вони практично незамінні в структурних дослідженнях сполук, що містять, водень дозволяючи фіксувати положення атомів водню і довжину водневих зв'язків.

Відзначимо, що з трьох видів випромінювань, вживаних для дослідження структури рідин, найбільш підходить рентгенівське. Щоб в цьому переконатися, порівняємо енергію нейтрона і рентгенівського фотона, а також час прольоту ними відстані порядку міжатомного, тобто 10-10м. При цьому


Eф =hc/λ En =h2/(2mλ2)


звідки


Eф =2mcλ/h = 105 En (68)

Оскільки швидкість фотона c ≈ 108 м/с, а швидкість нейтрона υn=(3kT/m)1/2 = 103 м/с, той час проходження ними відстані порядка 10-10 м складає 10-18 с для фотона і 10-13 с для нейтрона. Отже, енергія рентгенівських фотонів майже в 105 разів більше, ніж енергія нейтронів при тій же довжині хвилі. У стільки ж разів менше тривалість взаємодії фотона з атомом. Тому для рентгенівського випромінювання непружне розсіювання атомів не виконує ролі, для нейтронів же воно складає значну частину загального розсіювання, що ускладнює методику дифракційного експерименту. Разом з цим слабке поглинання нейтронів дозволяє одержувати діфрактограми від рідких металів, сильно поглинаючих рентгенівське випромінювання. Застосування до рідин електронографічних досліджень зв'язане з рядом важкоусуваємих побічних ефектів. Електрони є зручним засобом вивчення будови молекул газів, структури кристалічних і аморфних тіл.


Розсіювання однаковими атомами

Розглянемо розсіювання рентгенівського випромінювання, електронів і нейтронів сукупністю атомів одного елементу (зріджені інертні гази, розплавлені метали, напівметали і діелектрики). Виведемо рівняння, що зв'язує кутовий розподіл інтенсивності розсіяного випромінювання з радіальною функцією розподілу W(R) яка описує ближній порядок в розташуванні атомів. Припустимо, що паралельний пучок монохроматичного проміння довжиною хвилі λ направлений на зразок досліджуваної речовини, миттєве положення атомів якого визначається векторами R1,R2,…RN щодо довільно вибраного початку відліку. Позначимо F1,F2,…FN — атомні амплітуди розсіювання; N число атомів, що беруть участь в розсіянні. Сумарну амплітуду хвилі, розсіяної даною конфігурацією атомів, можна представити у вигляді

 (69)


Відповідну інтенсивність визначимо множенням виразу (69) на його комплексно-зв'язану величину:


 


або

 (70)


де Ie інтенсивність, віднесена до інтенсивності розсіювання одним електроном; Rj — Rk — векторна міжатомна відстань. Подвійна сума містить N2 членів. Серед них є N членів, для яких j ≠ k. Для кожного такого члена експоненціальний множник звертається в одиницю. Інші N2 — N членів залежать від взаємного розташування атомів. Оскільки, по припущенню, всі атоми системи однакові, вираз (70) приймає вигляд


 (71)


Воно визначає інтенсивність розсіяного випромінювання, обумовленого миттєвим розташуванням атомів. Проте дифракційний експеримент дає не миттєву, а середню за час експозиції картину розсіювання.

Для того, щоб теоретично знайдений кутовий розподіл інтенсивності і одержане з досвіду відповідали один одному, необхідно всі члени подвійної суми в (71) усереднити по всіх можливих положеннях атомів в опромінюваному об'ємі зразка. Результат усереднювання залежатиме від того, чи є міжатомний вектор Rjk = Rj — Rk постійним по модулю або ж що безперервно змінюється від точки до точки. Випадок Rjk = const відноситься до молекули, другої — до речовини з безперервним розподілом атомів. Досліджуємо газ, молекули якого складаються з n атомів. Якщо тиск газу не дуже великий, то за кінцевий проміжок часу всі орієнтації молекул зустрічатимуться однаково часто. Отже, щоб одержати повну інтенсивність розсіювання в газі, потрібно визначити середнє значення інтенсивності для однієї молекули і помножити його на число молекул газу.

Щоб визначити середнє значення I(S), розглянемо в молекулі атоми j і k. Сумістимо початок координат з центром атома j. За вісь відліку кута α приймемо вектор nn0 паралельний осі Z . Тоді вірогідність того, що напрям вектора Rjk складає з осями координат кути, укладені між α і α + d α, φ і φ + d φ, рівна відношенню елементу сферичної поверхні до поверхні сфери:


 (72)


Умножаючи (71) на (72) і інтегруючи по кутах α і φ, знайдемо для однієї молекули формулу вперше одержану Дебаєм.


 (73)

Вона описує зв'язок між кутовим розподілом інтенсивності розсіювання окремими молекулами і їх структурою. Якщо молекули газу двухатомні, то інтенсивність розсіювання ними рівна


 (74)


При малих значеннях S інтенсивність I(S) наближається до 4F2, а при великих S — до 2F2. У області проміжних значень S крива має максимуми і мінімуми, положення яких визначимо, прирівнявши нулю похідну функції (74). Припускаючи, що атоми розсіюють як точки, що справедливе для нейтронів, одержимо рівняння tgSR = SR . З його рішення виходить, що перший максимум I(S) з'являється при S1R1 = 2,459π = 7,73 звідки


R1 = 7,73/S1 (75)


Насправді атоми розсіюють рентгенівське випромінювання і електрони не як точки і функція F2(S), що фігурує як співмножник у формулі (74), швидко убуває у міру зростання S. В результаті максимуми на кривій розсіювання стають менш чіткими, їх положення зміщується у бік великих S. Тому, щоб по формулі (75) обчислити відстань між атомами в двоатомній молекулі, необхідно розділити інтенсивність, заміряну для кожного кута, на атомний чинник, відповідний цьому куту. При цьому виходить функція інтенсивності а(S)= 1 + sinSR/(SR) перший максимум якої описується формулою (75). Якщо молекула містить більше двох атомів, то експериментальна крива інтенсивності визначиться сумою кривих, описуваних рівнянням (74). При цьому положення першого максимуму може не відповідати значенню R1. Для рідин і аморфних тіл обчислення середнього значення подвійної суми у виразі (71) роблять за допомогою радіальної функції розподілу W(R), пов'язаної з вірогідністю знаходження атома j в елементі об'єму dVj а атома k — в елементі dVk, співвідношенням


 (76)


де V — об'єм розсіюючої частини зразка; Rjk — відстань між парою атомів.

Середнє значення часток інтенсивності, що вносяться парами атомів j і k, виходить при множеннях кожного члена в подвійній сумі на (76) і інтеграціях по елементах об'єму як для dVj так і для dVk. Отже,

(77)


При збільшенні Rjk функція W(Rjk)→1, тому її зручно уявити у вигляді


W(Rjk) = [W(Rjk) — 1]+1 (78)


Припускаючи, що всі N(N — 1) членів подвійної суми рівні між собою, і нехтуючи одиницею в порівнянні з N, маємо


(79)

Або <I> = NF2(1 + NX1 + NX2) (80)


Розглянемо інтеграл

 (81)


Інтеграція по Vj розповсюджується на весь об'єм розсіюючої частини зразка, який можна прийняти за сферу радіусу L. Що ж до об'єму Vk той його аналітичний вираз залежить від взаємного розташування атомів. Але оскільки функція W(Rjk) сферично симетрична і при Rjk > Rk рівна одиниці, можна припустити, що Vk має форму сфери, радіус Rk якої визначає протяжність ближньої впорядкованості атомів.

Щоб обчислити подвійний інтеграл (81), припустимо, що вірогідність знаходження атома усередині об'єму V скрізь однакова. Тоді

 Сумісний центр атома j з початком координат. Положення атома k по відношенню до атома j визначатиметься відстанню R і кутами α і φ. Вираз (81) перетвориться до вигляду


 (82)


Інтегруючи (81), одержимо


 (83)


Подвійний інтеграл обчислюється точно в припущенні, що розсіююча частина зразка має форму сфери радіусу L.


 (84)

Підінтегральний вираз розпадається на два множники, одні з яких залежить від координат атома j а інший — від координат атома k. При цьому кожна інтеграція розповсюджується на весь об'єм V. Маємо


(85)


Підставляючи в (80) формули (83) і (85) знаходимо що усереднена інтенсивність розсіювання рівна


 (86)


Оскільки функція W(R)= 1 при R ≥ Rk то межі інтеграції від 0 до можна замінити межами від 0 до Rk. Враховуючи, що W(R) = Nρат(R)/V, а N/V = <ρат> одержимо


(87)


Перший доданок визначає інтенсивність розсіювання окремими атомами за відсутності інтерференції між ними; друге — розподіл інтенсивності розсіювання за наявності інтерференції, обумовленої ближнім порядком в розташуванні атомів. Третій доданок визначає інтенсивність розсіювання у області дуже малих кутів. Числове значення цього доданку залежить від розміру і форми зразка і не залежить від його внутрішньої структури. Дійсно, максимальне значення функції φ(SL)= 3(sinSL—SLcosSL)/(SL)3 дорівнює одиниці при SL = 0. Із зростанням SL функція φ(SL) здійснює сильно затухаючі осциляції щодо нульових значень, визначуваних рівнянням SL = tgSL, тобто при SL рівних 4,49; 7,74. При SL> 4,49 значення φ(SL) малі в порівнянні з одиницею. З рівності S = 4,49/L витікає, що для зразків порядка 0,1—0,2 см значення S = 4,5•10-7 Å -1. Малокутове розсіювання на зразках таких розмірів співпадає з первинним пучком. Його інтенсивність не може бути заміряна за допомогою звичних засобів. Це розсіювання експериментально виявляється в тих випадках, коли в досліджуваній речовині є флуктуації, колоїдні частинки або макромолекули розміром до 103 Å. Таким чином, за винятком малокутового розсіювання, інтенсивність, вимірювана експериментально, визначається рівнянням


 (88)


Щоб написати аналогічні рівняння для випадку розсіювання електронів тією ж речовиною, слідує атомну амплітуду розсіювання рентгенівського випромінювання замінити на атомну амплітуду розсіювання електронів, залишивши решта членів без змін. Якщо при дослідженні застосовуються нейтрони, то рівняння (88) можна представити у вигляді


 (89)

де bК — амплітуда когерентного розсіювання нейтронів зв'язаними ядрами, усереднена по станах спинів і ізотопах даного елементу. Застосовуючи до рівнянь (88) і (89) Фурье-перетворення, одержимо:


 (90)

 (91)


Ці рівняння лежать в основі вивчення структури атомарних рідин і аморфних тіл.


Параметри, визначувані по кривих інтенсивності

Безпосереднім результатом рентгено-, електроно- і нейтронографічних досліджень рідин і аморфних тіл є інтерференційна картина. У разі одноатомних рідин і аморфних тіл вона несе інформацію про ближній порядок в розташуванні атомів. Картина розсіювання молекулярними рідинами і аморфними тілами відображає атомний склад молекул, їх конфігурацію і взаємне розташування. Задача дослідження полягає в тому, щоб по інтерференційній картині відтворити просторову структуру речовини, встановити зв'язок між структурою і фізичними властивостями.

Для опису структури і структурно – чутливих властивостей рідин і аморфних тіл використовується не вся інтенсивність розсіювання, а лише її інтерференційна (структурна) частина


 (92)

Числові значення структурного чинника а(S) рівного відношенню спостережуваної інтенсивності когерентного розсіювання до інтенсивності незалежного розсіювання того ж числа атомів. При великих S, а також в тих випадках, коли розподіл атомів хаотичний, функція а(S)= 1. Під час переходу речовини із стану з неврегульованим розташуванням атомів в стан з впорядкованим їх розташуванням відбувається перерозподіл інтенсивності, посилення її в одних напрямах і ослаблення в інших. Функція а(S) осцилює з амплітудою, що поступово зменшується, біля одиниці, залишаючись позитивною при всіх значеннях S (мал. 2.11).



Згідно (92) послідовність максимумів а(S) визначається послідовністю максимумів функції sinSR/(SR). Ця функція має максимуми при значеннях SR, рівних 7,73; 14,06; 20,46; ... Отже,


R1 = 7,73/(S1)max = 14,06/(S2)max = 20,46/(S3)max = … (93)


Звідси видно, що у разі одноатомних рідин і аморфних тіл середня відстань від фіксованого атома до його найближчих сусідів визначається по значенню S, відповідному будь-якому максимуму інтерференційної функції а(S). Це означає, що визначаючим в утворенні картини розсіювання одноатомними рідинами і аморфними речовинами є найкоротша міжатомна відстань R1 що повторюється в різних порядках інтерференції.

Характерний, що значення R1 визначуване по кривій а(S), близько до значення істинної найкоротшої міжатомної відстані, тільки для рідин з щільною упаковкою атомів (зріджені, інертні гази; типові метали). Якщо ж взаємне розташування атомів в рідині не відповідає щільній упаковці (олово, вісмут, германій, кремній), значення R1 обчислене по формулі (93), не співпадає із значенням найкоротшої міжатомної відстані. В цьому випадку експериментальна крива а(S) визначається накладенням ряду кривих, описуваних рівнянням (92).

Співвідношення S1R1 = 7,73, тобто 4πR1sinθ = 7,73λ, аналогічно формулі Вульфа-Брегга 2dsinθ = λ. З цих формул виходить, що



Відношення цих величин дає R1 = 1,23d1. Рівняння Вульфа — Брегга для цього окремого випадку має вигляд


2R1sinθ = 1,23λ (94)


Таким чином, параметр S, відповідний першому максимуму а(S), пов'язаний з найкоротшою міжатомною відстанню R1 рівнянням Вульфа—Брегга, в яке введений поправочний коефіцієнт 1,23. Рівняння (94) і еквівалентну йому формулу R1= 7,73/S1 застосовують у разі молекулярних рідин для оцінки середньої відстані між сусідніми молекулами. При цьому припускають, що перший максимум інтенсивності цілком обумовлюється міжмолекулярним розсіюванням, просторовою конфігурацією молекул і їх упаковкою. Важливо відзначити, що про ступінь ближнього порядку в рідині і твердій аморфній речовині можна судити по ширині і висоті максимумів кривої а(S). Чим більше їх висота, тим менш інтенсивно тепловий рух атомів і тим вищий ступінь їх впорядкованості. Таким чином, маючи експериментальні криві розсіювання, можна по них визначити найкоротшу відстань між атомами і молекулами рідини, з'ясувати характерні особливості розташування найближчих сусідів, тенденції зміни упаковки частинок з температурою. Зв'язок інтерференційної функції із стисливістю. Граничне значення функції а(S) у напрямку до малих кутів розсіювання для будь-якої речовини пов'язано з його стисливістю. При цьому йдеться про граничне значення при S = 0 виразу (88), який був одержаний з точнішого рівняння (87) при виключенні з нього доданку, який визначається зовнішньою поверхнею досліджуваної речовини і не пов'язане з його структурою. Величина а(0), яку визначимо, є граничним значенням розсіюючої здатності речовини, віднесеної до одного атома. Вираз (88) для S = 0 перепишемо у вигляді


 (95)


Враховуючи умову нормування функції ρ(R), одержимо


  


Інтенсивність розсіювання при S = 0 рівна


 (96)

Це співвідношення показує, що значення інтерференційної функції при нульовому куті розсіювання представляється як міра флуктуації числа атомів, що містяться в даному об'ємі. Ці флуктуації пов'язані з коефіцієнтом ізотермічної стисливості βT = 1/ρat (dρat /dp)T співвідношенням


 (97)


Таким чином,


a(0) = < ρat >kT βT (98)


Згідно цій формулі граничне значення а(0) буде більше для речовин (газів), що сильно стискаються, ніж для тих, що малостискаються (рідин, аморфних тіл). Значення а(S) при малих кутах розсіювання різко зростає при підході до критичної точки, що пов'язане з виникненням флуктуації густини — областей згущування і розрідження. Рідина стає все більш «пористою». Безпосередньо біля критичної точки області згущувань чергуються з областями розріджень. Через необмежене зростання стисливості речовини флуктуації густини можуть перевищувати 100 Å. Користуясь формулою S = 2π/d, знаходимо, що розсіювання на флуктуаціях такої величини виявляється при S = 0,06 Å-1. Це при довжині хвилі λ = 1,54 Å відповідає куту розсіювання близько 40`.

Визначивши а(0), можна по формулі (98) обчислити βT. Проте значення а(0) не можна заміряти експериментально, якщо криві розсіювання виходять від плоскої поверхні зразка. При зйомці на проходження потрібно знати інтенсивність первинного пучка рентгенівського випромінювання або нейтронів. Вимірювання абсолютного значення цієї інтенсивності зв'язане з технічними труднощами. Практично зручніше визначати βT не через граничне значення інтенсивності а(0), а через радіальну функцію ρ(R). Замість (95) можна написати


 (99)


звідки


 (100)


Цей вираз вельми важливе для пояснення впливу сил тяжіння і відштовхування на пружні властивості рідин. Приведемо декілька прикладів.

Допустимо, що досліджувана речовина складається з симетричних молекул діаметром а, між якими діють тільки сили відштовхування. Радіальна функція розподілу, і залежність енергії взаємодії молекул від відстані між ними виглядають так, як показано на мал. 2.12. З нього виходить, що


U(R) = +∞ , ρat(R) = 0 при R ≤ a (101)

U(R) = 0, ρat(R) —<ρ> = 0 при R > a

Коефіцієнт ізотермічної стисливості такої системи


 (102)


Оскільки 4/3πa3 — об'єм, що оточує кожну молекулу, в межі якого не може проникнути інша молекула, то (N/V)(4/3)πa3 = 1 і, отже, βT = 0. Цей результат відповідає моделі твердих непроникних щільно упакованих кульок.

Якщо ті ж молекули притягуються один до одного за законом U(R) = —A/R6 то


 (103)


Перший інтеграл визначає площу під кривою розподілу, що відображає потенційну енергію відштовхування молекул. Її значення рівне одиниці, як і у попередньому випадку. Другий інтеграл визначає площу, яка відповідає області тяжіння молекул. Отже,


 βT > 0 (104)


Цей результат показує, що облік енергії тяжіння молекул приводить до збільшення стисливості речовини, і чим більше ця енергія, тим вище коефіцієнт стисливості.

Переходячи до реальнішої моделі і вважаючи, що взаємодія молекул описується формулою Леннарда—Джонса, одержимо

(105)


В цьому випадку значення βT буде ще більше за рахунок збільшення площі, обмеженої кривою розподілу. Таким чином, сили відштовхування молекул зменшують стисливість речовини, сили тяжіння збільшують її. І чим більше крутизна кривої відштовхування, тим менше стисливість і більше пружність. Оскільки функція 4πR2[ρat(R) — < ρat >] перетворюється в нуль на відстані R, рівному декільком молекулярним діаметрам, то з (100) витікає, що для стисливості рідини визначальне значення має найближче оточення, характер зміни енергії тяжіння і відштовхування молекул на малих відстанях.

Для кількісного опису пружних властивостей рідин потрібні певні значення функції 4πR2[ρat(R) — < ρat >] при малих R, що пов'язане з необхідністю точних вимірювань функції [а(S) — 1] при великих S. Розрахунки по формулі (100) дають завищені значення βT якщо функція розподілу має помилкові піки при R < R0 обумовлені обривом кривої при S = Smax і приблизними значеннями інтенсивності при великих кутах розсіювання. Для усунення помилкових піків слід в інтерференційну функцію ввести множник ехр(—b2S2) значення параметра b, в якому підбирають так, щоб добуток [a(S) — 1] ехр(—b2S2) при S = Smax було рівне приблизно 0,1 свого первинного значення. Проте множення всіх значень інтерференційної функції на ехр(—b2S2) приводить до деякого зрушення положення першого і подальших максимумів кривої радіального розподілу. Зв'язок структурного чинника з електронними властивостями металів. Однією з фізичних властивостей металів, безпосередньо пов'язаних з ближнім порядком і енергією взаємодії частинок, є електропровідність. Розвиток квантової теорії твердого тіла привів до висновку, що електропровідність рідких металів можна обчислити теоретично за експериментальними даними для структурного чинника а(S), задаючи Фурье-образ потенційної енергії взаємодії електронів з атомами розплаву. Основна ідея, на якій базуються розрахунки електропровідності, полягає у тому, що розсіювання електронів провідності рідкого металу описується структурним чинником, аналогічним для рентгенівського випромінювання або нейтронів. Помітимо, що структурний чинник розсіювання електронів провідності обмежений значеннями S, які для одновалентних металів знаходяться зліва від першого максимуму а(S), а для двох (і більш) валентних металів — справа від нього. В той же час, за даними розсіювання повільних нейтронів і рентгенівського випромінювання довжиною хвилі λ = 0,5—0,7 Å, структурний чинник визначається до S = 15—20 Å-1. За сучасними уявленнями, електрони провідності металу не можна розглядати як вільні. Їх рух в кристалі модульований періодичним силовим полем гратки. Безперервний енергетичний спектр вільних електронів в просторі розпадається на зони дозволених енергій — зони Бріллюена, розділені інтервалами енергій, забороненими для електронів. На шкалі енергій E(k) зони Бріллюена зображають графічно у вигляді смуг дозволених значень енергії і розривів між ними (мал. 2.13).

Страницы: 1, 2, 3, 4, 5


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.