рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Современное состояние исследований в области функциональных конденсационных покрытий высокой проводи...

Результаты теоретических расчетов фракционирования и распределения состава по толщине покрытия, предложенные в работах [45, 140], можно использовать при анализе систем, слабо отклоняющихся от идеальности (например, Fe-Cr [174, 185], Pb-Sn [110] и др.), либо при отсутствии данных об активности компонентов в сплаве. В том случае, когда активности компонентов в сплаве известны или их определение не представляет практических трудностей, можно рекомендовать методику расчета фракционирования, предложенную авторами работ [30, 78, 112] и использованную ими при изучении закономерностей испарения сплавов Cu-Al. Выведенные формулы связывают, в общем виде, состав конденсата с составом расплава в любой произвольно выбранный промежуток времени из полного цикла испарения. Полный цикл испарения разбивается на i интервалов; в течение каждого из которых коэффициенты конденсации aA, aB и коэффициенты активности fA и fB определены и постоянны (рассматривается бинарный сплав).

Анализ метода расчета фракционирования бинарных систем, предложенного в [30, 78, 112], показывает его несомненные преимущества при изучении закономерностей испарения двойных систем, для которых известны коэффициенты активности f. Методика может быть успешно применена и при анализе испарения “идеальных” систем. Недостаток данного методического подхода к решению задачи о фракционировании заключается в том, что для систем с числом компонентов более трех вывод расчетных формул сложен и в настоящее время отсутствует [190].

Можно сказать, что методы расчета фракционирования многокомпонентных систем при испарении конечных навесок, приведенные выше, дают возможность решить практически все задачи, возникающие при изучении испарения и конденсации сплавов в вакууме. Применение того или иного метода определяется задачами исследования, необходимой точностью определения изучаемых параметров, наличием данных о термодинамической активности компонентов в расплаве.

Из других методов решения аналогичных задач следует отметить работу [2]. Авторы получили в неявном виде зависимость концентрации компонента в тигле от времени и начальных условий. Уравнение, показывающее, каким должно быть отношение скоростей испарения чистых компонентов U, чтобы при заданных начальных условиях покрытие имело необходимый состав и толщину, записывается в виде:

,       (1.7)

где М' – масса конденсата, М0 – начальная масса сплава в испарителе, с01 – исходная концентрация компонента в испарителе, с'1 – необходимая концентрация компонента в покрытии.

Авторы [60, 126] отмечают, что формула (1.7) имеет ограниченное применение, так как отношение скоростей испарения чистых компонентов почти не зависит от температуры, что затрудняет выбор режима испарения. Если же подставить действительное отношение скоростей испарения компонентов при различных температурах, то уравнение (1.7) для ряда двойных систем (например, Cu-Zn) не решается ни при каких начальных условиях. Применение соотношения (1.7) ограничивается сплавами, компоненты которых мало отличаются по скоростям испарения (например, система Ag-Au). Именно для такого сплава авторы работы [2] провели экспериментальную проверку предложенного ими метода расчета.

В некоторых случаях модель идеального раствора не удовлетворяет необходимой точности расчета фракционирования и распределения состава по толщине покрытия, вследствие чего значение термодинамической активности компонентов становится обязательным.

Данных об активности компонентов в двойных системах в литературе довольно мало. В табл. 1.1 приведены данные об активности цинка в медно-цинковых сплавах [27], из которых видно, что в диапазоне значений n более 0,8 значения f совпадают со значениями n и, таким образом, сплавы этих составов при их испарении в вакууме подчиняются закону Рауля. В области малых концентраций цинка имеет место отрицательное отклонение от закона Рауля.

Авторами работы [78] определены значения активности компонентов в расплаве системы Cu-Al. Приведенные ими данные по составу конденсатов и соответствующих им расплавам использованы для определения активности меди в жидких расплавах Cu-Al графическим интегрированием уравнения:

. (1.8)

Таблица 1

Значения c, n, a и f для медно-цинковых сплавов при 727 °С

Весовая концентрация (% по массе), с

Молярная  концентрация, п

Активность, а

Коэффициент  активности, f

5,3

0,052

0,0045

0,0865

9,7

0,094

0,0086

0,0915

14,8

0,144

0,0185

0,128

20,0

0,195

0,0301

0,154

26,0

0,255

0,0545

0,214

38,0

0,373

0,134

0,480*

46,0

0,453

0,200

0,460

48,0

0,481

0,246

0,51

51,1

0,504

0,291

0,58

 

* – для a-фазы f = 0,31

Активность меди рассчитывалась по площади, ограниченной кривой зависимости  с поправкой на молекулярные массы компонентов. Затем, по значениям активности меди, рассчитывался коэффициент активности . Коэффициент активности алюминия в сплавах Сu-Аl определялся по коэффициенту активности меди графическим интегрированием известного уравнения Гиббса-Дюгема, для данной системы имеющего вид:

.           (1.9)

Возможность графического определения величины этого интеграла доказана в работе [26], так как величина fAl всегда конечна. Результаты экспериментов работы [30] и сопоставление их с экспериментальными данными других исследователей [187] показывают, что значения активности меди в сплавах с содержанием алюминия более 10 вес.% не совпадают: по данным [30] активность меди в расплавах выше. Объясняют этот эффект [78] взаимодействием части алюминия с материалом испарителя с образованием тугоплавких соединений и снижением содержания алюминия в расплаве.

Данные об активности алюминия в сплавах Сu-Аl могут быть использованы для расчета режима стационарного испарения (см. п. 1.4) при нанесении покрытий на полосовые материалы в непрерывном или полунепрерывном режимах металлизации [60, 125, 135].

Авторы работы [45] определяли коэффициенты активности несколько иным методом. Для двойных систем нетрудно получить, что

,        (1.10)

,                                                      (1.11)

где  и  – концентрации компонентов в покрытии при t = 0. Соотношения (1.10) и (1.11) позволяют определить коэффициент активности опытным путем. Эксперимент, проведенный на сплаве Fe-Cr при температуре испарения 1600 °С показал, что ,  при м2/кг. Отношение . Близость fFe и fCr к единице указывает на то, что исследуемый сплав по свойствам приближается к идеальному раствору. Для некоторых других систем данные об активности компонентов приведены в работе [161].

Существующие экспериментальные исследования фракционирования в своей основе имеют один принцип: сопоставление данных о составе конденсатов и расплава на различных стадиях испарения навески. Однако экспериментально эта задача решается различными методами. Детально все известные методы проанализированы в работах [54, 60, 135].

4. Закономерности формирования многокомпонентных систем в режиме стационарного испарения сплавов


В основном, метод испарения конечных навесок используется только при получении тонких пленок различного назначения, причем одним из обязательных условий технологии является фиксированная геометрия испарения, т.е. осаждение пленок проводится на неподвижные относительно испарителя подложки.

В условиях массового производства, а также при необходимости получения покрытий значительной толщины (более 30...40мкм [125]) в практике вакуумной металлизации применяют метод стационарного испарения [60, 135] (в зарубежной литературе используется термин Steady-State evaporation), при котором состав сплава в испарителе, а следовательно, и состав пара над ним и конденсата стабилизируется за счет непрерывной подачи в испаритель компонентов сплава. Впервые теоретические аспекты испарения сплавов в стационарном режиме рассмотрены в работах Дейла [157], Фостера и Пфайфера [160], кинетика и термодинамика процесса стационарного испарения двойных сплавов приведена в работе [174], сведения о промышленном использовании метода стационарного испарения – в обзоре [187] и в монографии [125].

Методика расчета стационарного состояния может быть распространена на случай нескольких компонентов, если не образуются интерметаллические соединения, приводящие к отклонению от закона Рауля.

На основании баланса масс можно записать:

,                                                  (1.12)

где V – объем сплаве в испарителе; S – площадь поверхностного испарения; c1 – концентрация компонента в испарителе (моль/ед. объема); c10 – концентрация компонента в подаваемом материале (моль/ед.объема); R – скорость подачи материала (моль/с).

В работе [157] рассмотрены три варианта установления стационарного состояния, отличающиеся начальными условиями. Подробный анализ всех трех вариантов обсуждается в [190].

Большое значение для практического осуществления метода имеет исследование переходного режима от начала испарения до установления стационарного состояния, в частности, определение времени переходного режима и анализ путей его уменьшения. В переходном режиме могут изменяться с течением времени состав пара (конденсата), сплава в тигле, подаваемого материала, скорость испарения и подачи компонентов, температура испарения и объем расплава в тигле.

Для ориентировочной оценки времени переходного режима авторы [160] предлагают формулу:

, сек (1.13)

где r – плотность сплава в испарителе;  и  – весовые проценты компонентов в покрытии и в испаряемом сплаве при стационарном режиме.

Начальная концентрация компонентов в испарителе принята равной необходимой концентрации их в покрытии.

Расчеты для сплава 80% Ni – 20% Cr показали, что стационарное состояние, которому соответствует содержание хрома в покрытии 37%, достигается за 48минут. В некоторых системах расчетное время достижения стационарного режиме составляет несколько часов, что неприемлемо для практики вакуумной металлизации. Эффективными методами сокращения времени переходного режима являются правильный выбор начальной концентрации сплава в испарителе, повышение температуры и площади испарения, уменьшение объема испарителя.

Методика расчета стационарного режима испарения может быть распространена на случай нескольких компонентов, если не образуются интерметаллические соединения, приводящие к отклонению от закона Рауля. Постановка задачи для испарения многокомпонентной системы достаточно сложна [138]. Некоторые методические приемы решения подобных задач для испарителей непрерывного действия приведены в работах [3, 138]. Стационарное состояние зависит от геометрии испарения [3], а также от соотношения скоростей испарения и подачи в расплав одного из компонентов (как правило легирующего [138]). При непрерывном восполнении утечки вещества для обеспечения стационарного состояния необходимо использовать тигель с изменяющейся площадью поверхности испарения (расширяющийся сверху конусный тигель). Стационарный режим устанавливается также в тех случаях, когда скорость подачи легирующего компоненте в расплав меньше скорости испарения со всей испаряющейся поверхности расплава [138]. В противном случае, наблюдается неограниченное возрастание примеси в расплаве, вследствие чего, начиная с некоторого момента времени систему необходимо рассматривать как сплав.

Авторы [8] выполнили теоретический анализ закономерностей кинетики испарения и конденсации двойных систем в стационарном режиме. Подход аналогичен работе [157], однако представляет определенный интерес вывод формулы для времени переходного режима. В качестве критерия оценки выхода режима испарения на стационарный предлагается брать не заданную концентрацию покрытия, как это сделали авторы [160], а допустимое относительное отклонение состава конденсата D от заданного. Формула в этом случае имеет вид:

.     (1.14)

Здесь с0 – исходная концентрация одного из компонентов в расплаве;  – концентрация этого же компонента в конденсате при t=0;  – концентрация компонента в конденсате при . Общая схема расчетов, приведенная в работе [8], была использована для расчета стационарного режима испарения сплава Fe-Cr. Экспериментальная проверка показала соответствие расчетных и опытных данных.

Метод стационарного испарения имеет большие перспективы при нанесении покрытий из сплавов на непрерывно движущуюся полосовую сталь, пленку и другие рулонные материалы. Преимуществом метода является то, что различие в термодинамических свойствах компонентов не играет существенной роли. Кроме того, имеется возможность испарять сплавы длительное время и получать покрытия строго определенного состава по толине. Есть у метода стационарного испарения и нерешенные проблемы. В научном плане задача решена только для бинарных систем в предположении, что выполняется закон Рауля. Решение задачи в общем случае отсутствует; имеется только одна попытка обобщить один из типов стационарного испарения на n компонентов [157]. В техническом плане можно выделить две основные задачи, от успешного разрешения которых зависит широкое использование метода в промышленности. Первая задача – создание долгодействующих испаряющих систем и средств контроля и регулировки стабильности режима испарения, вторая – стабилизация температурного режима нанесения покрытий в установках непрерывного или полунепрерывного действия и техническое решение охлаждения вакуумных камер. Судя по литературе, в настоящее время этим задачам практически внимание не уделяется. Некоторые конкретные примеры применения метода стационарного испарения обсуждаются в работах [54, 60, 125, 135], теоретические варианты решения типовых задач обобщены и систематизированы нами в обзоре [90, 92].

5. Некоторые электрофизические и физико-химические характеристики многокомпонентных конденсированных структур


Направлением настоящего исследования является выбор оптимальных составов многокомпонентных структур на базе комплексного изучения и анализа наиболее характерных их параметров – электрических, электрофизических, коррозионно-электрохимических, механических и т.д. В литературе отсутствуют сведения о системном подходе к решению этой проблемы, однако имеется достаточно обширная информация о конкретных параметрах конденсированных структур, в частности, об электрофизических свойствах. Выбор легирующих добавок к сплавам меди определяется, как правило [60, 150], требованиями, предъявляемыми к эксплуатационным параметрам. Нами сделана попытка обобщить некоторые наиболее характерные подходы к решению проблемы выбора оптимальных составов многокомпонентных структур для конкретных изделий [92]. Авторы [16, 58, 150] изучали влияние Mn, Ni, Al, Ti и Pb в различных комбинациях и весовых соотношениях на электрические свойства многокомпонентных пленок на основе меди. Также сделана попытка оценить влияние каждого компонента сплава на удельное сопротивление и термический коэффициент полученной пленки. Образцы для исследований получали на лабораторной установке при давлении остаточных газов в вакуумной камере 10-2 Па. В качестве подложек использовались ситалловые пластинки 8´60мм. Осаждение пленок проводилось на предварительно разогретую поверхность, температура подложки составляла 300-350°С. Толщина покрытий – 1,0-1,5 мкм. Для исключения влияния неточности измерения толщины пленки на значения электрических параметров рассчитывалось произведение gr, где g – плотность конденсата, r – удельное сопротивление. Определение ТКС пленок исследуемых сплавов осуществлялось в диапазоне температур 20-100 и 20-200°С.

Из табл.1.2 видно, что удельное сопротивление пленок оловосодержащих сплавов выше, чем у безоловянных, в то время как ТКС существенно ниже. Сравнение групп сплавов 5-13-15, 1-17, 8-16 и 3-6-14 показывает, что наличие олова в исходной навеске приводит к более сильному влиянию легирующих добавок на удельное сопротивление конденсата. Так, в сплаве 5 прирост за счет Ni и Cr в присутствии олова составляет 12,8мкОм×см, в сплаве 13 за счет тех же легирующих добавок – 4,4 мкОм×см, а в сплаве 15-2,8мкОм×см. Введение в медно-оловянные сплавы Ni, Cr и Ве сопровождается образованием соединений

выбранных металлов не только с медью, но и с оловом. Возможно образование и тройных интерметаллических соединений. Это приводит к формированию качественно новой решетки, отличной от двухфазной системы Cu-Sn и безоловянных систем, и способствует дополнительному росту удельного сопротивления. Однако при сопоставлении электрофизических свойств многокомпонентных пленок [58, 99] массивных сплавов и конденсатов было обнаружено, что правило Матиссона rспл×aспл=rмет×aмет для конденсатов этих же сплавов не выполняется из-за особенностей процесса формирования. Выполнение правила Матиссона отмечено только для сплавов Cu-Sn при содержании Sn в исходной навеске 8-12% и более 60 %. Введение никеля в медно-оловянный сплав способствует выравниванию параметра ra в широком диапазоне концентраций олова.

В работе [58] изучены электрофизические свойства пленок, полученных вакуумным испарением сплавов Cu-Sn и сплавов этой же системы с добавлением Ni, Cо, Аl. Расчеты режимов испарения конечных навесок Cu-Sn и их аналогов, выполненные по методике работы [140], показывают, что система Cu-Sn испаряется в вакууме без значительного фракционирования, особенно при температуре испарения выше 1500-1700°С. Это способствует формированию идентичных по составу и свойствам слоев на различных стадиях испарения навески и создает предпосылки для промышленного использования сплава в установках периодического действия. Легирующие добавки не оказывают существенного влияния на характер испарения сплава Cu-Sn. Анализ влияния состава медно-оловянных сплавов и легирующих добавок на удельное сопротивление r пленок показал [58, 106], что общей закономерностью является немонотонный ход кривых r=f(%Sn): в диапазоне 38-42% Sn имеет место максимум удельного сопротивления. Характерно, что добавки Ni и Cо не меняют положения максимума кривых по оси абсцисс и имеет место соответствие между массивными сплавами системы Cu-Sn и изучаемыми конденсатами. Добавки Аl, наоборот, приводят к сдвигу максимума кривой r=f(%Sn) в область низких концентраций олова. При содержании Аl 1-3 вес % общий характер зависимости r=f(%Sn) остается без изменений.

В работе [106] проведены исследования пленок сплавов олово - медь, получаемых методом испарения в вакууме, с целью замены серебра в слаботочных скользящих контактах. Сравнение зависимостей r = f(%Sn) пленок и контактного сопротивления Rк = f(%Sn) пленок Сu-Sn в паре с никелевыми сферическими контактами показывает, что имеет место определенная корреляция между удельными и контактным сопротивлениями. Максимум контактного сопротивления совпадает с наибольшими значениями удельного сопротивления. При этом для пленок составов 38-48 % Sn характерны повышенная хрупкость и склонность к растрескиванию при незначительных нагрузках.

Детальные исследования влияния структуры и состава конденсированных слоев на электрические свойства пленок сплавов меди выполненных В.И. Поповым [119, 120], показывают, что легирование меди марганцем, алюминием, титаном и палладием увеличивает удельное сопротивление массивного сплава, не оказывая существенного влияния на удельное сопротивление пленок. Заслуживает внимание тот факт, что размеры зерна пленки, определяющие ее электрические свойства, весьма чувствительны к физико-механическим свойствам легирующих элементов. Наиболее сильное влияние оказывают элементы, имеющие неограниченную растворимость в меди: Al, Mn, Ti. Анализ данных по удельному сопротивлению тонких пленок, полученные В.И. Поповым в работе [113], и сравнение с закономерностями формирования структуры конденсатов показывают, что введение легирующих добавок в медь сопровождается измельчением зерна и ослаблением влияния толщины пленки на удельное сопротивление и рельеф поверхности. Некоторые отличительные особенности в электрических параметрах пленок обнаружены при испарении сплавов Cu-Mn-Ni-Тi, содержащих 1,45-2,10% Mn; 3,9-5,9% Ni; 0,02-0,09% Тi [119]. Пленки имеют удельное сопротивление в 1,5-2,0 раза выше, чем удельное сопротивление чистого медного конденсата. В случае неполного испарения навески сплавов данных составов r пленки отличается от r медных конденсатов в 8-12 раз. Для пленок, полученных испарением сплавов Cu-Mn-Со и Cu-Mn-Pd-Тi, существенных отклонений электрических параметров от чистых медных конденсатов не наблюдается.

Одной из фундаментальных работ, посвященных исследованию электрофизических свойств пленок различных сплавов на основе меди, применяемых в электронной технике, является статья [18], в которой дана наиболее полная информация об электрических параметрах конденсированных систем. В качестве легирующих добавок использованы Mn, Ni, Со, Pd, Тi, Те, Al, Cr, Mg, Y. Установлено, что легирование меди марганцем увеличивает r на 50%, марганцем и палладием – на 60%, алюминием – на 20%. Наименьшее влияние оказывает теллур: введение 0,48% Те снижает электропроводность меди всего на 4%. Следует отметить, что в ряде случаев электропроводность пленок выше, чем исходных массивных сплавов.

Анализ данных работы [58] позволил определить одно из направлений настоящего исследования, а именно: изучение некоторых электрофизических характеристик пленок сплавов меди (раздел 5) и проведение сопоставительного анализа с физико-химическими характеристиками конденсатов (разделы 3 и 4 настоящей работы).

Что касается физико-химических характеристик конденсированных структур, а также их влияние на основные эксплуатационные и электрические параметры, то подобных сведений в литературе крайне мало. Можно лишь выделить работу [60], в которой обобщены результаты исследования влияния сплава контактных площадок резисторов типа СПЗ на стабильность Rmin во влажной камере (влажность 98%, температура 35°С, t=21сут.), при испытаниях на износостойкость (10000 циклов с металлическими контактами и 25000 с графитовыми щетками) и в условиях смены температур (от –70°С до +40°С). Материалы контактных площадок – сплавы меди. Статистическая обработка результатов измерений (на каждый состав покрытия и вид испытаний – 40-60 образцов) позволяет сделать следующие выводы. В условиях смены температур максимальные изменения Rmin не превышают 0,96Ом при допускаемом отклонении 35Ом; изменения характерны для всех систем и остатков. Наилучшую влагостойкость (табл. 1.2) показали пленки сплавов Cu-Sn (60-62% Sn) и Cu-Sn-Со (10-12% Sn; 0,5-1,5% Со). Сплав Cu-Sn-Ni (60-62% Sn; 1,0 % Ni) близок по характеристикам к первым двум сплавам, но имеет несколько пониженную стойкость в паре с графитовой щеткой. Сплавы Cu-Sn с содержанием олова 10-12 % по максимальному значению  близки к указанным, однако имеют более низкую воспроизводимость результатов по . Дисперсия первых трех сплавов 0,005-0,05 Ом2, последнего 25,4-30,6 Ом2.

Таблица 2

Влаго- и износостойкость переменных резисторов
с контактными площадками из сплавов Cu-Sn и их аналогов

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.