рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


строение воды как физического тела - гидрофизика

- родниковая вода - родником или ключом обозначается небольшой водный поток, бьющий непосредственно из земных недр. Некоторые российские реки и водоёмы порождаются именно такими подземными источниками. Родниковая вода берется в том самом месте, откуда она поступает из-под земли. Вода может быть пресной или минерализованной. В первом случае мы говорим о родниках и ключах, а во втором — об источнике минеральных вод;

- геотермальная - так называют воду, выделяющуюся из недр Земли с температурой выше 20°С. В большинстве случаев они имеют температуру от 40 до 100°С. Наибольшая температура поступающей к земной поверхности геотермальной воды может достигать 300°С, а температура пара доходить до 600°С; геотермальные воды с температурой 20—40°С используют для лечебных целей, а с температурой 40—60°С — для выращивания растений в парниках;

- сточные воды - подразделяются на два вида: первые поступают из городских квартир, вторые - с различных промышленных предприятий. Несмотря на постоянно совершенствующиеся способы очистки, повторное применение сточных вод на сегодняшний день не представляется возможным.

Разновидности воды отличаются сочетанием образующих их изотопов водорода и кислорода, которых (естественных) известно по три каждого

Изотопы водорода: легкий, тяжелый и сверхтяжелый. Легкий — протий (ядро - один протон) составляет большую часть водорода обычной воды. Тяжелый (D) — дейтерий (ядро — протон и нейтрон). Его в обычной воде мало. Сверхтяжелый (Т) — тритий (ядро — протон и два нейтрона). Его вообще очень мало. Тритий радиоактивен, период полураспада больше 12 лет. Он непрерывно образуется в стратосфере под действием космического излучения. Трития на всем земном шаре меньше одного килограмма, но его можно обнаружить в любой капле воды. Предполагают, что может существовать и четвертый, и пятый изотоп водорода.

Строение трех изотопов водорода очень напоминает строение одной, двух и трех элементной вибраторной антенны. Протий - это, скорее всего, антенна, состоящая из одного активного вибратора, дейтерий, возможно, антенна, состоящая из одного активного и одного пассивного вибратора, который в антенной технике называют экраном и располагают позади активного. Тритий, возможно, активный вибратор с двумя пассивными, один из них служит экраном, а второй - директором и располагается впереди активного вибратора. Масса активного и пассивного вибратора практически одинакова, что справедливо и для массы протона и нейтрона. Наличие пассивных вибраторов позволяет увеличить коэффициент усиления антенны, т. е. дальность ее действия, что применительно к химическим взаимодействиям может означать повышение активности химического элемента, что и наблюдается у дейтерия и трития. Если все это так, то аналогом протона является активный вибратор, а аналогом нейтронов - пассивные. Отличие нейтрона от протона состоит в том, что протон имеет заряд, а нейтрон заряда не имеет, что также хорошо согласуется с активным и пассивным вибратором.

Изотопы кислорода: легкий (его больше всего), средний (его совсем мало) и тяжелый (его также мало). Искусственно созданы и другие радиоактивные изотопы кислорода, которые живут очень недолго.

Молекула воды может быть образована сочетаниями различных изотопов водорода и кислорода. Поэтому существует очень много разных вод, но некоторые из них неустойчивы. Нет только обыкновенной воды, так как вся вода разная - «необыкновенная».

Легкая вода — это вода, образованная самым легким изотопом водорода и самым легким изотопом кислорода, но в чистом виде в природе такой воды (совокупности большого количества таким молекул без примеси других) нет. Она в небольших количествах существует только в нескольких лабораториях мира.

Тяжелая вода, образованная только тяжелыми изотопами водорода и кислорода, в природе также отсутствует. Однако при использовании тяжелой воды в качестве энергетического топлива из одного литра обычной воды можно добыть больше энергии, чем ее можно получить из ста килограмм высококачественного угля. Атомы тяжелой воды являются радиоактивными («мечеными») атомами и благодаря этому можно проследить путь (траекторию движения) любого вещества (везде и во всем, включая организм человека), в состав которого они входят.

Полутяжелая вода, в одной молекуле которой смешаны разные изотопы водорода, есть в любой природной воде, но получить ее в чистом виде невозможно, так как в ней постоянно протекают реакции изотопного обмена. Атомы изотопов водорода очень подвижны и непрерывно переходят из одной молекулы воды в другую.

Радиоактивная (тритиевая) вода, в состав молекулы которой входит тритий, выпадает на Землю вместе с осадками, но ее очень мало, а в океанской воде ее еще меньше. Эта вода очень опасна и пока нужна только ученым.

«Нулевая» вода состоит из чистого легкого водорода и кислорода воздуха. Эту воду физики и химики приняли за эталон, она имеет очень постоянный состав.

Тяжеловодородная вода, в состав молекул которой входит дейтерий, в ядерной технике называется тяжелой водой.

Тяжелокислородная вода, в которой тяжелой является молекула кислорода, может быть получена из природной воды, но получить ее очень сложно и трудно. Она нужна для исследований многих биологических и химических процессов.

Реальная вода - это смесь многих вод.

Вода из водопроводного крана, которую берут из рек и водохранилищ, содержит в небольших количествах и тяжеловодородную и тяжелокислородную воду. Во льду больших ледников Кавказа тяжелой воды больше, чем в речной воде, а тяжелокислородной столько же, но в воде ручейков, бегущих по ледникам Кавказа, тяжеловодородной меньше, а тяжелокислородной больше, чем в речной. При испарении вода обогащается легким водородом, и поэтому дождевая вода отличается от воды водоемов. При замерзании уменьшается содержание тяжелого водорода, но повышается содержание тяжелого кислорода. Поэтому вода растаявшего льда отличается от той воды, из которой он был получен.

Классификация воды по источникам



Таблица 3

Распределение вод на земном шаре (единица измерения — миллион кубических километров)

Мировой океан, солёные воды

Атмосфера 

Подземные воды

Почвенные воды

Ледники

Воды озёр и рек

Воды в растениях и животных

1120-1300

0,013

60-100

50-90

20-30

1-4

0,006


Подземные воды глубокого залегания расположены в десятках-сотнях метрах от поверхности земли, они пропитывают пористые горные породы, а также образуют гигантские подземные бассейны, окруженные водонепроницаемыми слоями. Вода в таких подземных резервуарах находится под давлением.

Другой тип подземных вод поверхностные, расположенные в почве и верхних слоях земной поверхности на глубине нескольких метров. По сравнению с водами глубокого залегания у них есть один недостаток и одно преимущество. Недостаток: эти воды гораздо активнее контактируют с поверхностью земли и поэтому они слабее защищены от загрязнений, чем воды глубокого залегания. Преимущество этих вод заключается в том, что они более доступны и легко накапливаются в колодцах и поверхностных резервуарах.

Следующий по величине массив пресных вод (20—30 млн. км3) сосредоточен в ледниках Антарктиды, Гренландии и островов Северного Ледовитого океана.

Пресную воду из атмосферы (около 13 тыс. км3) мы получаем в виде осадков — дождя и снега.

Мировой океан содержит большие запасы воды, которая может быть опреснена различными физико-химическими методами.

Основной запас пресной воды, употребляемой человеком, сосредоточен в озерах и реках. Одно из крупнейших российских озерных хранилищ воды — озеро Байкал содержит около 20 тыс. км3 воды. На сегодняшний день байкальская вода считается самой чистой в мире; она характеризуется следующими параметрами: содержание (в мкг/л) свинца — 0,7 (ПДК = 10), кадмия — 0,02 (ПДК = 1), ртути — 0,1 (ПДК = 1), мышьяка - 0,3 (ПДК = 10).

Другой источник воды – живые организмы. В растениях и животных, состоящих на две трети из воды, содержится 6 тыс. км3 воды. Человеческий организм находится в состоянии непрерывного водного обмена с окружающей средой: он выделяет воду в виде пота и мочи и ежедневно восполняет водные потери пресной водой. Если нет возможности напиться, то вода теряется с потом и с выдыхаемым воздухом, и в результате наступает угроза обезвоживания (дегидратации) организма. На первой стадии учащается пульс, возникает слабость, затем — головокружение и одышка. При обезвоживании, составляющем 10% от массы тела, происходят нарушение речи, зрения и слуха и потеря сознания. Гибель организма наступает от необратимых изменений в нервной и сердечно-сосудистой системах при водопотере 15—25% от массы тела (в зависимости от температуры окружающей среды).

Классификация воды по физическим свойствам

Природную воду исходя из ее физических свойств можно разделить на ряд групп по различным признакам, например,


По температуре:

• Холодные

Переохлажденные………………………. Менее 0 °С

очень холодные ………………………….0-10 °С

холодные………………………………….10-20 °С

• Низкотермальные

Теплые…………………………………….20-37 °С

Горячие…………………………………...37-50 °С

• Высокотермальные

очень горячие…………………………….50-100 °С

перегретые………………………………..более 100 °С, до критической температуры

По местонахождению:

• Атмосфера………………………….Метеорные

• Океаны, моря, озера, реки………...Поверхностные

• Земные недра……………………….Подземные


По различным видам состояния воды в горных породах (для подземных вод) :

• Парообразная (в незаполненных пустотах и порах пород), очень подвижна, может конденсироваться.

• Гигроскопическая, обволакивающая тончайшей пленкой частицы породы, прочно удерживается молекулярными и электрическими силами.

• Пленочная, также обволакивающая частицы породы, но более толстой пленкой; может передвигаться, но не подчиняется силе тяжести (гравитации).

• Гравитационная, или свободная, подчиняющаяся силе тяжести и передающая гидростатическое давление. Частный случай этой воды - капиллярная, которая может подниматься вопреки гравитации, например в легких глинах на высоту до 12 м, правда, за весьма длительный срок (около года).

• В форме льда, заполняющего трещины в породах или залегающего в форме пластов.



4. Аномальные свойства воды

 

Аномальные свойства воды были открыты учеными в результате длительных и трудоемких исследований. Эти свойства столь привычны и естественны в обыденной нашей жизни, что обычный человек даже не подозревает об их существовании. А вместе с тем вода - вечная спутница жизни на Земле действительно оригинальна и неповторима.

Как хорошо известно, вода принята за образец меры – эталон для всех других веществ. Казалось бы, за эталон для физических констант следовало бы выбрать такое вещество, которое ведет себя самым нормальным, обычным образом. А получилось как раз наоборот.

И первое, самое поразительное, свойство воды заключается в том, что вода принадлежит к единственному веществу на нашей планете, которое в обычных условиях температуры и давления может находиться в трех фазах, или трех агрегатных состояниях: в твердом (лед), жидком и газообразном (невидимый глазу пар).

Итак, главные аномалии воды:

1.Плотность дистиллированной воды при увеличении температуры от 0 до 100°С имеет максимум (при температуре 4°С), в то время как у других жидкостей она постоянно уменьшается. В соответствии с плотностью при температуре от 0 до 4°С объем воды уменьшается, а затем, при повышении температуры, увеличивается. При замерзании вода расширяется, а не сжимается, как все другие жидкости. Плотность льда при 0°С примерно на 10% меньше плотности воды при этой температуре.

Примечание. Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность воды изменялась так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались бы до 0°С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0°С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно, и водоем промерзал бы на всю глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотности вода достигает при 4°С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается не поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.

2.Температура замерзания воды с увеличением давления понижается, а не повышается, как это следовало бы ожидать.

Примечание. Этой аномалией можно объяснить существование жидкой воды на больших глубинах в морях при температуре, значительно ниже 0°С.

3.Температура замерзания (0°С) и кипения (100°С) дистиллированной воды аномальна по сравнению с температурой гидридов, входящих в одну с кислородом группу Периодической системы Д.И.Менделеева: серы — H2S, селена — H2Se, теллура — H2Te (замерзание при - 90°С, а кипение при - 70°С). Вода при нормальном давлении кипит при температуре +1000С, а замерзает при 00С — это известно всем. Но согласно ее расположению в Периодической таблице Менделеева она должна кипеть при -800... -900С, а замерзать при -1000С. Отклонение от «нормы» объясняют необычно сильным взаимодействием между собой ее молекул (кроме воды подобными аномальными свойствами, но в меньшей мере обладают аммиак и фтористый водород). Нормальным состоянием воды, исходя из имеющихся на Земле условий, должно быть газообразное состояние.

Исходя из теории антенн, аномальную температуру кипения и замерзания воды можно объяснить и тем, что она за счет высокой «направленности» своих антенн увеличивает прочность внутренних связей, поэтому для их разрыва требуется большая энергия.

4.Удельная теплоемкость воды (4,18 Дж/(гК)) в 5 — 10 раз больше удельной теплоемкости других природных веществ. Укажем для сравнения значения удельной теплоемкости некоторых веществ (Дж/(гК)): песок 0,79; известняк 0,88; хлорид натрия 0,88; глицерин 2,43; этиловый спирт 2,85. Лишь у немногих веществ (литий, древесина) она несколько приближается к удельной теплоемкости воды.

Примечание. Благодаря высокой теплоемкости вода является мощнейшим энергоносителем на нашей планете. Поэтому в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулятором температуры на земном шаре.

5.Удельная теплоемкость воды уменьшается при повышении температуры, тогда как у других веществ (кроме ртути) она увеличивается. При этом уменьшение удельной теплоемкости воды происходит при температуре от 0 до 37°С, а затем она увеличивается (у ртути она непрерывно уменьшается).

6.Удельная теплота плавления льда необыкновенно высокая и в среднем равна 333·103 Дж/кг. Вода и лед при 0°С различаются между собой по содержанию скрытой энергии на 333·103 Дж. С понижением температуры удельная теплота плавления не увеличивается, а уменьшается примерно на 2,1 Дж на 1°С.

Примечание. При плавлении льда объем, занимаемый водой, уменьшается, следовательно, давление понижает температуру плавления льда. Это вытекает из принципа Ле Шателье. Действительно, пусть лед и жидкая вода находятся в равновесии при 0°С. При увеличении давления равновесие, согласно принципу Ле Шателье, сместится в сторону образования той фазы, которая при той же температуре занимает меньший объем. Этой фазой является в данном случае жидкость. Таким образом, возрастание давления при 0°С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.

7.Вязкость воды с ростом давления уменьшается, а не увеличивается, как следовало бы ожидать по аналогии с другими жидкостями. Водородные связи в жидкой воде непрерывно образуются и рвутся, причем эти процессы протекают кооперативно в пределах короткоживущих групп молекул воды, названных “мерцающими кластерами”. Их время жизни оценивают в диапазоне от 10-10 до 10-11 с. Такое представление правдоподобно объясняет высокую степень подвижности жидкой воды и ее низкую вязкость

8.Диэлектрическая проницаемость ε у воды чрезвычайно велика и равна 81 (у льда при t = -5°С εл = 73), тогда как у большинства других веществ она составляет 2—8 и лишь у некоторых достигает 27—35 (спирты).

Примечание. Вследствие этого вода обладает большей растворяющей и диссоциирующей способностью, чем другие жидкости.

9.Коэффициент преломления света водой n = 1,333 для длины волны λ=580 нм и при t = 20°С, вместо требуемого теорией значения

10.Удельная теплоемкость водяного пара до температуры t = 500°C отрицательна, т. е. пар при сжатии остается прозрачным, а при разрежении превращается в туман (сгущается).

11.Удельная теплота парообразования воды при понижении температуры увеличивается, достигая при 0°С очень высокого значения (25,0·105 Дж/кг).

12.Вода обладает самым высоким поверхностным натяжением среди жидкостей (0,0727 H/м при 20°С), за исключением ртути (0,465 H/м).

Может ли вода течь вверх? Вода может подниматься вверх на очень большую высоту по очень тоненьким трубочкам — капиллярам («туннелям»), смачивая их стенки.

Жидкость, смачивающая стенки капилляров, например, вода в стеклянной трубке образует вогнутый мениск, а несмачивающая, например, ртуть в той же трубке - выпуклый мениск.

Смачивающие свойства воды проявляются при подъеме грунтовых вод из толщи земли, и при питании растений, и при движении по порам промокательной бумаги или по тряпочке, опущенной в сосуд с водой. Эта объясняется ее повышенным (по сравнению с другими жидкостями) поверхностным натяжением. Каждая молекула на поверхности втягивается во внутрь жидкости. В результате возникает сила, стягивающая поверхность жидкости.

Сила поверхностного натяжения поддерживает бегающих по поверхности воды насекомых, лапки которых водой не смачиваются. Эта сила придает мыльному пузырю, падающей капле, и любому количеству жидкости в условиях невесомости форму шара. Она же поднимает воду в почве и по любым капиллярам, стенки которых, наоборот, хорошо смачиваются водой.

Гипотеза 5.10: Незамерзание воды в бутылках, помещенных внутрь пирамиды Голода, при обычных минусовых температурах является следствием вовлечения содержащихся в воде солей в мощное направленное вихревое движение, создаваемое сконцентрированными в пирамиде полями, и (или) выпадения их в осадок. Первое, как и быстрое течение реки, а второе из-за большей чистоты воды препятствует ее замерзанию. Быстрое замерзание воды после встряхивания бутылки является следствием нарушения упорядоченного вихревого движения (уменьшения вследствие этого его скорости) и (или) «загрязнения» воды выпавшими ранее солями, что перемещает точку замерзания воды в область более высоких температур, соизмеримых с температурой в пирамиде.

Как льется и капает вода в воду? Если посмотреть на конец очень тонкой водяной струи то можно наблюдать, что на поверхности струи возникают волнообразные упругие усиливающиеся колебания. Затем образуется тонкая перетяжка, которая разрывается. Утолщение струи, находящееся перед перетяжкой, превращается в каплю, а то, что было перетяжкой, оттягивается и становится маленькой капелькой. Под действием поверхностного натяжения капля колеблется (дышит), то вытягивается, то, снова расширясь, сплющивается. Ее колебания помогли физикам разгадать тайну атомного ядра, которое по некоторым своим свойствам аналогично капле воды.

Наблюдения за каплей воды дают весьма интересную информацию. Например, капля воды, упавшая в спокойную воду, превращается в вихревое кольцо. Это кольцо сверху сначала напоминает замкнутый контур, в котором «бьется» стоячая волна. Затем оно расширяется, в нем возникают утолщения, которые развиваются во вторичные вихревые колечки. Процесс повторяется, число колечек растет. И капля превращается в сложную систему вихревых потоков. При этом образуются самые разные геометрические формы. Разные формы вода образует не только при своем падении в воду. Она, как известно, и «камень точит», деформируя своим потоком грунт и создавая себе русло которое, углубляясь, постепенно меняет форму дна от узкого конусообразного (вверху) до почти плоского (внизу), плавно переходя через многие другие формы.

«Понять природу этих аномалий более чем важно, - говорит стэнфордский физик Андерс Нильсон, под руководством которого недавно завершилось еще одно интересное исследование, посвященное «странностям» воды, - ведь вода – обязательная основа нашего собственного существования: нет воды – нет жизни. Наша работа позволяет объяснить эти аномалии на молекулярном уровне, при температурах, подходящих для жизни».



5. Фазовые превращения и диаграмма состояния воды


Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления, они называются диаграммами состояния в координатах Р---Т

На рисунке 5 приведена в схематической форме диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.


В жидком состоянии – вода

 Твёрдом – лёд

 Газообразном – пар

Рис.5.1


Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.


лед = пар (кривая ОА)

лед = жидкость (кривая ОВ)

жидкость = пар (кривая ОС)

О – точка замерзания воды


Для воды критическая температура равна 374 градусов по цельсию. При нормальном давлении жидкая и парообразная фазы воды находятся между собой в равновесии при 100 градусов по цельсию, т.к. при этом давление пара над жидкостью сравнивается с внешним давлением и вода закипает. Пересечение трех кривых происходит в точке О – тройной точке, в которой все три фазы находятся между собой в равновесии.

Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА, отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится, и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представ-ляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом -- сосуществуют. Кривая ОА называется кривой равновесия жидкость--пар или кривой кипения. В таблице 5 приведены значения давления насыщенного водяного пара при нескольких температурах.

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.