рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Термодинаміка і синергетика

d P/ d t < 0 (2.2)


2.1.1ДИССИПАТИВНІ СТРУКТУРИ

Кожна система складається з елементів (підсистем). Ці елементи знаходяться в певному порядку і зв'язані певними відносинами. Структуру системи можна назвати організацію елементів і характер зв'язку між ними.

У реальних фізичних системах є просторові і тимчасові структури .

Формування структури - це виникнення нових властивостей і відносин в безлічі елементів системи . У процесах формування структур грають важливу роль поняття і принципи :

1. Постійний негативний потік ентропії .

2. Полягання системи в далечіні від рівноваги .

3. Нелінійність рівнянь тих, що описують процеси .

4. Колективна (кооперативне) поведінка підсистем .

5. Універсальний критерій еволюції Прігожіна - Гленсдорфа.

Формування структур при необоротних процесах повинне супроводжуватися якісним стрибком (фазовим переходом) при досягненні в системі критичних значень параметрів. У відкритих системах зовнішній внесок в ентропію (2.1) d S в принципі можна вибрати довільно, змінюючи відповідним чином параметри системи і властивості навколишнього середовища . Зокрема ентропія може зменшуватися за рахунок віддачі ентропії в зовнішнє середовище, тобто коли d S < 0 . Це може відбуватися, якщо вилучення з системи в одиницю часу перевищує виробництво ентропії усередині системи, тобто


dS dSe dSi ¾ < 0, якщо > > 0 (2.3)¾ d t dt dt

Щоб почати формування структури, віддача ентропії повинна перевищити деяке критичне значення . У сильно нерівноважній відстані змінні системи задовольняють нелінійним рівнянням.

Таким чином, можна виділити два основні класи необоротних процесів:

1. Знищення структури поблизу положення рівноваги . Це універсальна властивість систем за довільних умов .

2. Народження структури далеко від рівноваги у відкритій системі за особливих критичних зовнішніх умов і при нелінійної внутрішньої динаміки. Ця властивість не універсальна.

Просторові, тимчасові або просторово-часові структури, які можуть виникати далеко від рівноваги в нелінійній області при критичних значеннях параметрів системи називаються дисипативними структурами.

У цих структурах взаємозв'язані три аспекти :

1. Функція стану, що виражається рівняннями .

2. Просторово - тимчасова структура, що виникає із-за нестійкості .

3. Флуктуації, відповідальні за нестійкості .


Мал. 1. Три аспекти дисипативних структур.


Взаємодії між цими аспектами приводить до несподіваних явищ - до виникнення порядку через флуктуації, формуванню високоорганізованої структури з хаосу.

Таким чином, в дисипативних структурах відбувається становлення з буття, формується те, що виникає з того, що існує.

2.2 САМООРГАНІЗАЦІЯ РІЗНИХ СІСТЕМ І СИНЕРГЕТІКА


Перехід від хаосу до порядку, що відбувається при зміні значень параметрів від до критичних до надкритичних, змінює симетрію системи . По цьому такий перехід аналогічний термодинамічним фазовим переходам . Переходи в нерівноважних процесах називаються кінетичними фазовими переходами. У близи нерівноважних фазових переходів не існує несуперечливого макроскопічного опису. Флуктуації такі ж важливі, як і середнє значенні. Наприклад, макроскопічні флуктуації можуть приводити до нових типів не устойчивостей.

Отже, в далечіні від рівноваги між хімічною, кінетичною і просторово-часовою структурою реагуючих систем існує несподіваний зв'язок . Правда, взаємодія, що визначають взаємодію констант швидкостей і коефіцієнтів перенесення, обумовлені короткодіючими силами (силами валентності, водневими зв'язками і силами Ван-Дер-Ваальса). Проте вирішення відповідних рівнянь залежать, крім того, від глобальних характеристик. Для виникнення дисипативних структур зазвичай потрібний, щоб розміри системи перевищували деяке критичне значення - складну функцію параметрів, що описують реакційно-дифузійні процеси . Ми можемо по цьому стверджувати, що хімічні нестійкості задають подальший порядок, за допомогою якого система діє як ціле .

Якщо врахувати дифузію, то математичне формулювання проблем, пов'язаних з дисипативними структурами, зажадає вивченні диференціальних рівнянь в приватних похідних. Дійсно, еволюція концентрації компонент Х з часом визначається рівнянням вигляду


 (2.4)

де перший член дає внесок хімічних реакцій в зміні концентрації Хi і зазвичай має простий полиноминальный вигляд, а другий член означає дифузію уздовж осі r.

Дійсно вражаюче, як багато різноманітних явищ описує реакційно-дифузне рівняння (2.4 ), по цьому цікаво розглянути ² основне рішення, яке б відповідала термодинамічній гілці . Інші рішення можна було б отримувати при не послідовних устойчивостях, що виникають у міру видалення від стану рівноваги. Нестійкості такого типу зручно вивчати методами теорії біфуркації [Николіс і Прігожін, 1977]. В принципі, біфуркація є щось інше, як виникнення при деякому критичному значенні параметра нового вирішення рівнянь . Припустимо, що ми маємо хімічну реакцію, відповідну кінетичному рівнянню [ Маклейн і Уоліс, 1974] .


d X ¾ = а X (X-R) (2.5)¾ d t


Ясно що при R < 0 існує тільки одне рішення, незалежне від часу, X = 0. У точці R = 0 відбувається біфуркація, і з'являється нове рішення X = R.


Мал. 2.3. Біфуркационная диограмма для рівняння ( 2.5.)

Суцільна лінія відповідає стійкій гілці

крапки - нестійкої гілки


Аналіз стійкості в лінійному наближенні дозволяє перевірити, що рішення X = 0 під час переходу через R = 0 стає нестійким, а рішення X = R - стійким . Загалом випадки при зростанні деякого характеристичного параметра р відбуваються послідовні біфуркації . На малюнку 2.4. показано єдине рішення при р = р1, але при р = р2 єдиністю поступається місце множинним рішення.

Цікаво відзначити, що біфуркація в деякому розумінні вводить у фізику і в хімію, історію - елемент, який раніше вважався прерогативою наук що займаються вивченням біологічним, суспільних і культурних явищ .


Мал. 2.4. Послідовні біфуркації:

А і А1 - точки первинних біфуркацій з термодинамічній гілці

У і В1 - точки вторинної біфуркації


Відомо, що при зміні параметрів, що управляють, в системі спостерігаються різноманітні перехідні явища. Виділимо тепер з цих спостережень певні загальні риси, характерні для великого числа інших переходів у физико хімічних системах.

З цією метою представимо графічно (мал. 2.5) залежність вертикальною компоненти швидкості перебігу рідини в деякій певній крапці від зовнішнього обмеження, або, в більш загальному вигляді, залежність змінної стан системи Х (або х = Х - Хs ) від параметра, що управляє l. Таким чином ми отримаємо графік, відомий під назвою бифуркационной діаграми.

Мал. 2.5. Біфуркаційна діаграма:

а - стійка частина термодинамічної гілки

а1 - не стійка частина термодинамічної гілки

в1,в2 - дисипативні структури, народжені в

надкритичній області .


При малих значення l можливо лише одне рішення, відповідне поляганню спокою в бенаровському експерименті. Воно є безпосередню екстраполяцію термодинамічної рівноваги, і подібно рівноважне, що характеризується важливою властивістю - асимптотичною стійкістю, оскільки в цій області система здатна гасити внутрішні флуктуації або зовнішнє обурення . З цієї причини таку гілку станів ми називатимемо термодинамічною гілкою. Під час переходу критичного значення параметраl, позначеного lз на малюнку 2.5., що перебувають на цій гілці стає нестійкими, оскільки флуктуації або малі зовнішні обурення вже не гасяться . Діючи подібно до підсилювача, система відхиляється від стаціонарного стану і переходить до нового режиму, у разі бенаровського експерименту відповідному стану стаціонарної конвекції. Обидва цих режиму зливаються при = lз і розрізняються при > з . Це явище називається біфуркацією . Легко зрозуміти причини, по яких це явище слід асоціювати з катастрофічними змінами і конфліктами. Насправді, у вирішальний момент переходу система повинна зробити критичний вибір ( у околиці = з ), що в завданні Бенара пов'язане з виникненням право- або лівообертальних осередків в певній області простору ( мал. 2.5., гілки в1 або в2 ).

Поруч з рівноважним станом стаціонарний стан асимптотичних стійкий (по теоремі про мінімальне виробництво ентропії ), по цьому через безперервність ця термодинамічна гілка тягнеться у всій докритичній області. Досягши критичного значення термодинамічна гілка може стати нестійкою, так що будь-яке, навіть мале обурення, перекладає систему з термодинамічної гілки в новий стійкий стан, який може бути впорядкованим. Отже, при критичному значенні параметром відбулася біфуркація і виникла нова гілка рішень і, відповідно, новий стан. У критичній області, таким чином, подія розвивається по такій схемі

Флуктуація ® Біфуркація

нерівноважний фазовий перехід ®

Народження впорядкованої структури

Біфуркація в широкому розумінні - придбанні нової якості рухами динамічної системи при малій зміні її параметрів ( виникнення при деякому критичному значенні параметра нового вирішення рівнянь ) . Відзначимо, що при біфуркації вибір наступного стану носить суто випадковий характер, так що перехід від одного необхідного стійкого стану до іншого необхідного стійкому стану проходить через випадкове (діалектика необхідного і випадкового) . Будь-який опис системи, що зазнає біфуркацію, включає як детерміністичний, так і імовірнісний елементи, від біфуркації до біфуркації поведінці системи детерміновано, а в околиці точок біфуркації вибір подальшого шляху випадковий. Проводячи аналогію з біологічною еволюцією можна сказати, що мутації - це флуктуації, а пошук нової стійкості грає роль природного відбору. Біфуркація в деякому розумінні вводить у фізику і хімію елемент історизму - аналіз стану в1, наприклад, має на увазі знання історії системи, що пройшла біфуркацію.

Загальна теорія процесів самоорганізації відкритих сильно не рівноважних системах розвивається на основі універсального критерію еволюції Прігожіна-Гленсдорфа. Цей критерій є узагальненням теореми Прігожіна про мінімальне виробництво ентропії. Швидкість виробництва ентропії, обумовлена зміною термодинамічних сил Х, згідно цьому критерію підкоряється умові


dx P / t £ 0 (2.6)£


Ця нерівність не залежить не від яких припущень про характер зв'язків між потоками і силами в умовах локальної рівноваги і носить по цьому універсальний характер . У лінійній області нерівність (2.6. ) переходить в теорему Прігожіна про мінімальне виробництво ентропії . Отже, в неравновестной системі процеси йдуть так, тобто система еволюціонує таким чином, що швидкість виробництва ентропії при зміні термодинамічних сил зменшується (або рівна нулю в стаціонарному стані).

Впорядковані структури, які народжуються далеко від рівноваги, відповідно до критерію (2.6.) і є диссипативні структури.

Еволюція біфуркації і подальшої самоорганізації обумовлено, таким чином, відповідними не рівноважними обмеженнями.

Еволюція змінних Х описуватиметься системою рівнянь


  (2.7)


де функції F як завгодно складним чином можуть залежать від самих змінних Х і їх просторових похідних координат r і часу t . Крім того, ці функції буду залежать від параметрів, що управляють, тобто тих характеристик, що змінюються, які можуть сильно змінити систему . На перший погляд здається очевидним, що структура функції { F } буде сильна визначаться типом відповідної даної системи . Проте, можна виділити деякі основні універсальні риси, незалежні від типу систем.

Вирішення рівняння (2.7), якщо немає зовнішніх обмежень, повинні відповідати рівновазі при будь-якому виді функції F . Оскільки рівноважний стан стаціонарний, то


Fi ({Xрав},равl ) = 0 (2.8)l


У більш загальному випадку для нерівноважного стану можна аналогічно написати умову


Fi ({X},l) = 0 (2.9)l


Ці умови накладають певні обмеження універсального характеру, наприклад, закони еволюції системи повинні бути такими, щоб виконувалася вимога позитивності температури або хімічної концентрації, що отримуються як вирішення відповідних рівнянь.

Іншою універсальною межею є нелінійним . Хай, наприклад деяка єдина характеристика системи задовольняє рівнянню


 (2.10)


де до - деякий параметр, l - зовнішні обмеження, що управляють . Тоді стаціонарний стан визначається з наступного рівняння алгебри


l - kX = 0 (2.11)l

звідки

Xs = l / до (2.12)l


У стаціонарному стані, таким чином, значенні характеристики, наприклад, концентрації, лінійно змінюється залежно від значень обмеженняl, що управляєl, і є для кожного єдиний стан Хs . Абсолютно однозначно можна передбачити стаціонарне значення Х при будь-якомуl,если мати хоч би два експериментальні значення Х(l). Керуючий параметр може, зокрема, відповідати ступеню віддаленості системи від рівноваги . Поведінка в цьому випадку системи дуже схожі на рівновазі навіть за наявності сильно нерівноважних обмежень.


Мал. 2.6. Ілюстрація універсальної межі нелінійності в самоорганізації структур


Якщо ж стаціонарне значення характеристики Х не лінійно залежить від обмеження, що управляє, при деяких значеннях, то при одному і тому ж значенні є декілька різних рішень . Наприклад, при обмеженнях система має три стаціонарні рішення, малюнок 2.6.в. Така універсальна відмінність від лінійної поведінки наступає при досягненні параметром, що управляє, деякого критичного значення l - виявляється біфуркація. При цьому в нелінійній області невелике збільшення може привести до неадекватно сильному ефекту - система може зробити стрибок на стійку гілку при невеликій зміні поблизу критичного значенняl, малюнок 2.6.в. Крім того з перебувань на гілці А1в можуть відбуватися переходи Ав1 ( або навпаки ) навіть раніше, ніж будуть досягнуті полягання В або А, якщо обурення накладаються на стаціонарний стан, більше значення, відповідного проміжній гілці А В . Обуреннями можуть служити або зовнішня дія або внутрішні флуктуації в самій системі. Таким чином, системі з множинними стаціонарними станами властиво універсально властивостям внутрішньо збудливість і мінливості скачкам.

Виконання теореми по мінімально виробництві ентропії в лінійній області, а, як узагальнення цієї теореми, виконання універсального критерію (2.6.) і в лінійній, і в нелінійній області гарантують стійкість стаціонарних нерівноважних станів. В області лінійності необоротних процесів виробництво ентропії грає таку ж роль, як термодинамічні потенціали в рівноважній термодинаміці. У нелінійній області величина dP / dt не має якого або загальної властивості, проте, величина dx P/dt задовольняє нерівності загального характеру (2.6.), яка є узагальненням теореми про мінімальне виробництво ентропії.


2.3 ПРИКЛАДИ САМООРГАНІЗАЦІЇ РІЗНИХ СИСТЕМ


Розглянемо як ілюстрацію деякі приклади самоорганізації систем у фізиці, хімії, біології і соціумі


2.3.1 ФІЗИЧНІ СИСТЕМИ

В принципі навіть в термодинамічній рівновазі можна вказати приклади самоорганізації, як результати колективної поведінки . Це, наприклад, всі фазові переходи у фізичних системах, такі як перехід рідина - газ, феромагнітний перехід або виникнення надпровідності . У нерівноважному стані можна назвати приклади високої організації в гідродинаміці, в лазерах різних типів, у фізиці твердого тіла - осцилятор Ганна, тунельні діоди, зростання кристалів.

У відкритих системах, міняючи потік речовини і енергії із зовні, можна контролювати процеси і направляти еволюцію систем до станів, все більш далеких від рівноваги. В ході нерівноважних процесів при деякому критичному значенні зовнішнього потоку з неврегульованих і хаотичних станів за рахунок втрати їх стійкості можуть виникати впорядковані стани, створюватися дисипативні структури.


2.3.1а ОСЕРЕДКИ БЕНАРА

Класичним прикладом виникнення структури з повністю хаотичної фази є конвективні осередки Бенара . У 1900 році була опублікована стаття Х.Бенара з фотографією структури, що по вигляду нагадувала бджолині соти (мал. 2.7).


Мал. 2.7. Осередки Бенара :

а) - загальний вид структури

б) - окремий осередок.


Ця структура утворилася в ртуті, налитій в плоску широку судину, що підігрівається знизу, після того, як температурний градієнт перевищив деяке критичне значення . Весь шар ртуті (або іншій в'язкій рідині) розпадався на однакові вертикальні шестигранні призми з певним співвідношенням між стороною і висотою (осередки Бенара). У центральній області призми рідина піднімається, а поблизу вертикальних граней - опускається . Виникає різниця температур Т між нижньою і верхньою поверхнею DТ = Т2 - Т1 > 0 .Для малих до критичних різниць Т < DТkp рідина залишається в спокоїD><D, тепло від низу до верху передається шляхом теплопровідності . Досягши температури підігріву критичного значення


Т2 = Тkp (відповідно Т = DТkp )


починається конвекція. Досягши критичного значення параметра Т, народжується, таким чином, просторова диссипативна структура . При рівновазі температури рівні Т2 =Т1, DТ = 0 . При короткочасному підігріві (підводі тепла) нижньої площини, тобто при короткочасному зовнішньому обуренні температура швидко стане однорідною і рівною її первинному значенню . Обурення затухає, а стан - асимптотика стійко. При тривалому, але до критичному підігріві ( DТ < Тkp ) в системі знову встановиться простий і єдиний стан, в якому відбувається перенесення до верхньої поверхні і передачі його в зовнішнє середовище (теплопровідність), мал. 2.8, ділянка а . Відмінність цього стану від рівноважного стану полягає в тому, що температура, щільність, тиск стануть неоднорідними. Вони будуть приблизно лінійно змінюватися від теплої області до холодної .


Мал. 2.8. Потік тепла в тонкому шарі рідини


Збільшення різниці температур DТ, тобто подальше відхилення системи від рівноваги, приводить до того, що стан нерухомої теплопроводящей рідини стає нестійким ділянка б на малюнку 2.8. Цей стан змінявся стійким станом (ділянка в на мал. 2.8), утворенням осередків, що характеризується . При великих різницях температур рідина, що покоїться, не забезпечує велике перенесення тепла, рідина ²вимушена рухатися, причому кооперативним колективним узгодженому образом.

Далі це питання розглядається в 3 розділі.


2.3.1б ЛАЗЕР ЯК СИСТЕМА, ЩО САМООРГАНИЗУЄТЬСЯ

Отже, як приклад фізичної системи, впорядкованість якої є наслідок зовнішньої дії, розглянемо лазер.

При найгрубішому описі лазер - це якась скляна трубка, в яку поступає світло від некогерентного джерела (звичайної лампи), а виходить з неї вузьконаправлений когерентний світловий пучок, при цьому виділяється деяке кількості тепла.



При малій потужності накачування ці електромагнітні хвилі, які випускає лазер, некорельовані, і випромінювання подібно до випромінювання звичайної лампи. Таке некогерентне випромінювання - це шум, хаос. При підвищенні зовнішньої дії у вигляді накачування до порогового критичного значення некогерентний шум перетвориться в ²чистий тон, тобто випускає число синусоїдальна хвиля - окремі атоми поводяться строго корельованим чином, само організовуватимуться.

Лампа ® Лазер

Хаос ® Порядок

Шум ® Когерентне випромінювання

У надкритичній області режим ²звичайної лампи ²виявляється не стабільним, а лазерний режим стабільним, малюнок 2.9.


Мал. 2.9. Випромінювання лазера в до критичної (а) і

надкритичній (б) області.


Видно, що утворення структури в рідині і в лазері формально описується вельми схожим чином. Аналогія пов'язана з наявністю тих же самих типів біфуркацій у відповідних динамічних рівнях.

Докладніше це питання розглянемо в практичній частині, в 3 розділі.


2.3.2 ХІМІЧНІ СИСТЕМИ


У цій області синергетика концентрує свою увагу на тих явищах, які супроводжуються утворенням макроскопічних структур. Зазвичай якщо дати реагентам про взаємодіяти, інтенсивно перемішуючи реакційну суміш, то кінцевий продукт виходить однорідний. Але в деяких реакціях можуть виникати тимчасові, просторові або змішані (просторові - тимчасові) структури. Найбільш відомим прикладом може служити реакція Белоусова-Жаботінського.

2.3.2а РЕАКЦІЯ БЕЛАУСОВА-ЖАБОТІНСЬКОГО

Розглянемо реакцію Белоусова-Жаботинского. У колбу зливають в певних пропорціях Ce2(SO4), KBrO3, CH2(COOH)2, H2SO4, додають декілька крапель індикатора окислення - відновлення - ферроїна і перемішують. Конкретніше - досліджуються окислювально-відновні реакції


Ce 3+_ _ _ Ce 4+ ; Ce 4+_ _ _ Ce 3+


у розчині сульфату церію, броміду калі, молочної кислоти і сірчаної кислоти . Додавання ферогена дозволяє стежити за ходом реакції по зміні кольору ( по спектральному поглинанню). При високій концентрації реагуючих речовин, що перевищують критичне значення спорідненості, спостерігаються незвичайні явища.

При складі

сульфат церію - 0,12 ммоль/л

броміду калі - 0,60 ммоль/л

молочної кислоти - 48 ммоль/л

3-нормальна сірчана кислота

небагато ферроїна

При 60 Із зміни концентрації іонів церію набуває характер релаксаційних коливанні - колір розчину з часом періодично змінюється від червоного (при надлишку Се3+ ) до синього ( при надлишку Це 4+), малюнок 2.10а.


Мал. 2.10. Тимчасові (а) і просторові (б)

періодичні структури в реакції

Белоусова-Жаботінського

Така система і ефект отримали назву хімічний годинник. Якщо на реакцію Белоусова-Жаботінського накладати обурення - концентраційний або температурний імпульс, тобто вводячи декілька Мілімолей бромату калі або торкаючись до колби в перебігу декількох секунд, то після деякого перехідного режиму знову здійснюватимуться коливання з такою ж амплітудою і періодом, що і до обурення. Дисипативна Белоусова-Жаботінського, таким чином, є асимптотичне стійкою. Народження і існування незгасаючих коливань в такій системі свідчить про те, що окремі частини системи діють погоджено з підтримкою певних співвідношень між фазами. При складі

сульфату церію - 4,0 ммоль/л

броміду калі - 0,35 ммоль/л

молочної кислоти - 1,20 міль/л

сірчаної кислоти - 1,50 міль/л

небагато ферроїна

при 20 З в системі відбуваються періодичні зміни кольору з періодом близько 4 хвилин. Після декількох таких коливань спонтанно виникають неоднорідності концентрації і утворюються на деякий час ( 30 хвилин ), якщо не підводити нові речовини, стійкі просторові структури, малюнок 2.10б . Якщо безперервно підводити реагенти і відводити кінцеві продукти, то структура зберігається необмежено довго.


2.3.3 БІОЛОГІЧНІ СИСТЕМИ

Тваринний світ демонструє безліч високо впорядкованих структур і що прекрасно функціонують. Організм як ціле безперервно отримує потоки енергії (сонячна енергія, наприклад, у рослин) і речовин (живильних) і виділяє в навколишнє середовище відходи життєдіяльності. Живий організм - це система відкрита. Живі системи при цьому функціонують безумовно в далечіні від рівноваги. У біологічних системах, процеси самоорганізації дозволяють біологічним системам ²трансформувати ²енергію з молекулярного рівня на макроскопічний. Такі процеси, наприклад, виявляються в м'язовому скороченні, що приводить до всіляких рухів, в утворенні заряду у електричних риб, в розпізнаванні образів, мови і в інших процесах в живих системах. Складні біологічні системи є одним з головних об'єктів дослідження в синергетиці. Можливість повного пояснення особливостей біологічних систем, наприклад, їх еволюції за допомогою понять відкритих термодинамічних систем і синергетики в даний час остаточно неясна . Проте можна вказати декілька прикладів явного зв'язку між понятійним і математичним апаратом відкритих систем і біологічною впорядкованістю.

Конкретніше біологічні системи ми розглянемо в 3 розділі, подивимося динаміку популяцій одного вигляду і систему ²жертва - хижак².


2.3.4 СОЦІАЛЬНІ СИСТЕМИ

Соціальна система є певним цілісним утворенням, де основними елементами є люди, їх норми і зв'язки. Як ціле система утворює нову якість, яка не зводиться до суми якостей її елементів. У цьому спостерігається деяка аналогія із зміною властивостей при переході від малого до дуже великого числа частинок в статичній фізиці - перехід від динамічних до статичних закономірностей . При цьому вельми очевидно, що всякі аналогії з физико-хімічними і біологічними системами вельми умовні, тому проводити аналогію між людиною і молекулою або навіть щось подібне було б не допустимою помилкою . Проте, понятійний і математичний апарат нелінійної нерівноважної термодинаміки і синергетики виявляються корисними в описі і аналізі елементів самоорганізації в людському суспільстві.

Страницы: 1, 2, 3


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.