рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Волоконная оптика и ее применение

Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.

Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.


Есть в волоконной технологии и свои недостатки


При создании линии связи требуются активные высоконадежные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение.

Точность изготовления таких элементов линии должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

Другой недостаток заключается в том, что для монтажа оптических волокон требуется дорогостоящее технологическое оборудование:

а) инструменты для оконцовки;

б) коннекторы;

в) тестеры;

г) муфты и спайс- кассеты.

Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.


Оптическое волокно и его виды


Промышленность многих стран освоила выпуск широкой номенклатуры изделий и компонентов оптоволокна. Следует заметить, что производство компонентов отличает высокая степень концентрации.

Большинство предприятий сосредоточено в США. Обладая главными патентами, американские фирмы (в первую очередь это относится к фирме "CORNING GLASS") оказывают влияние на производство и рынок компонентов во всем мире, благодаря заключению лицензионных соглашений с другими фирмами и созданию совместных предприятий.

Для передачи сигналов применяются два вида волокна: одномодовое SMF (single mode fiber) и многомодовое MMF (multi mode fiber). Свое название волокна получили от способа распространения излучения в них. Волокно состоит из сердцевины и оболочки с разными показателями преломления. В одномодовом волокне диаметр световодной жилы порядка 8-10 мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода, как ее называют).

Одномодовые волокна подразделяются на ступенчатые одномодовые волокна (step index single mode fiber) или стандартные волокна SF (standard fiber), на волокна со смещенной дисперсией DSF (dispersion-shifted single mode fiber), и на волокна с ненулевой смещенной дисперсией NZDSF (non-zero dispersion-shifted single mode fiber).

 Одномодовое волокно

Согласно законам физики, при достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. Т.е. при употреблении понятий много- и одномодовости следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии. Как уже отмечалась именно эта дисперсия имеет наибольшее влияние на пропускную способность канала. Величины материальной и межчастотной дисперсии на порядки меньше межмодовой. Однако одномодовое волокно исключает возможность распространения нескольких лучей, поэтому межмодовая дисперсия отсутствует, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 микрон. Как и в случае с многомодовыми световодами, используется и ступенчатая и градиентная плотность распределения материала. Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях, многомодовые же кабели завоевали свою нишу в локальных компьютерных сетях.

Многомодовое ступенчатое волокно

Основное различие между вариантами оптического волокна состоит в свойствах применяемого в них сердечника. Самый простой вариант сердечника - это кварцевое стекло с равномерной плотностью. Если отобразить плотности распределения слоев волокна, то получится ступенчатая картина, что и отображено в названии этого типа волокна. При достаточно большом радиусе равномерно плотного световода наблюдается эффект межмодовой дисперсии. Ее влияние на производительность оптического канала оказывается много больше межчастотной и материальной. Поэтому при расчете пропускной способности канала пользуются именно ее показателями. В настоящее время используют три стандартных диаметра сердечника многомодового волокна: 100 микрон, 62.5 микрон и 50 микрон. Наиболее распространены световоды диаметром 62.5 микрон, однако постепенно все более прочные позиции завоевывает сердечник 50 микрон. Вследствие простых геометрических законов распространения света несложно убедиться в его большей пропускной способности, поскольку он пропускает меньшее количество мод, тем самым уменьшая дисперсию импульса на выходе. Размер световодов выбран не случайно. Он непосредственно связан с используемой частотой световой волны. На данный момент выделяют три основных длины волны: 850 нм, 1300 нм и 1500 нм. Почему выбраны именно эти длины волн, мы поясним позже. Многомодовые ступенчатые волокна обладают малой пропускной способностью относительно действительных возможностей света, в связи с этим чаще в многомодовой технологии используют градиентные волокна.

Многомодовое градиентное волокно

Название волокна говорит само за себя. Основное отличие градиентного волокна от ступенчатого заключается в неравномерной плотности материала световода. Если отобразить плотности распределение на графике, то получится параболическая картина. Эффект межмодовой дисперсии как и в случае ступенчатой схемы все же проявляется, однако намного меньше. Это легко объяснимо с точки зрении геометрии. На рисунке видно, что длины пути лучей сильно сокращены за счет сглаживания. Более того интересен тот факт, что лучи проходящие дальше от оси световода хотя и преодолевают большие расстояния, но при этом имеют большие скорости, так как плотность материала от центра к внешнему радиусу уменьшается. А световая волна распространяется тем быстрее, чем меньше плотность среды. В итоге более длинные траектории компенсируются большей скоростью. При удачно сбалансированном распределении плотности стекла возможно свести к минимуму разницу во времени распространения, за счет этого межмодовая дисперсия градиентного волокна намного меньше. Как и в случае со ступенчатым волокном, в настоящее время используют три стандартных диаметра градиентного сердечника: 100 микрон, 62.5 микрон и 50 микрон, работающих также на частотах 850 нм, 1300 нм и 1500 нм. Однако насколько не были бы сбалансированны градиентные многомодовые волокна, их пропускная способность не сравниться с одномодовыми технологиями.


Волоконно-оптический кабель


Вторым важнейшим компонентом, определяющим надежность и долговечность является волоконно-оптический кабель (ВОК). На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli(Италия).

Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи. По условиям эксплуатации кабели подразделяют на:

- монтажные

- станционные

- зоновые

- магистральные.

Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину. Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.

Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.

При изготовлении ВОК в основном используются два подхода:

конструкции со свободным перемещением элементов

конструкции с жесткой связью между элементами.

По видам конструкций различают кабели повивной скрутки, пучковой скрутки, с профильным сердечником, ленточные кабели. Существуют многочисленные комбинации конструкций ВОК, которые в Сочетании с большим ассортиментом применяемых материалов позволяют выбрать исполнение кабеля, наилучшим образом удовлетворяющее всем условиям проекта, в том числе - стоимостным.

Отдельно рассмотрим способы сращивания строительных длин кабелей.

Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин. Сплайс-пластина - это конструкция для укладки и закрепления сращиваемых волокон разных кабелей.

После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов.


Области применения и классификация волоконно-оптических кабелей (ВОК)


В зависимости от основной области применения волоконно-оптические кабели подразделяются на три основных вида:

·       кабели внешней прокладки (outdoor cables);

·       кабели внутренней прокладки (indoor cables);

·       кабели для шнуров.

#"#">









Основной областью использования кабелей внутренней прокладки является организация внутренней магистрали здания, тогда как кабели для шнуров предназначены в основном для изготовления соединительных и коммутационных шнуров, а также для выполнения горизонтальной разводки при реализации проектов класса «fiber to the desk» (волокно до рабочего места) и «fiber to the room» (волокно до комнаты).

Общую классификацию оптических кабелей СКС можно представить в виде как показано на рисунке.


Электронные компоненты систем оптической связи

Передающие оптоэлектронные модули

Передающие оптоэлектронные модули (ПОМ), применяемые в волоконно-оптических системах, предназначены для преобразования электрических сигналов в оптические. Последние должны быть введены в волокно с минимальными потерями. Производятся весьма разнообразные ПОМ, отличающиеся по конструкции, а также по типу источника излучения. Одни работают на телефонных скоростях с максимальным расстоянием до нескольких метров, другие передают сотни и даже тысячи мегабит в секунду на расстояния в несколько десятков километров.

Типы и характеристики источников излучения

Главным элементом ПОМ является источник излучения. Перечислим основные требования, которым должен удовлетворять источник излучения, применяемый в ВОЛС:

- излучение должно вестись на длине волны одного из окон прозрачности волокна. В традиционных оптических волокнах существует три окна, в которых достигаются меньшие потери света при распространении: 850. 1300, 1550 нм;

- источник излучения должен выдерживать необходимую частоту модуляции для обеспечения передачи информации на требуемой скорости;

- источник излучения должен быть эффективным, в том смысле, что большая часть излучения источника попадала в волокно с минимальными потерями;

- источник излучения должен иметь достаточно большую мощность, чтобы сигнал можно было передавать на большие расстояния, но и не на столько, чтобы излучение приводило к нелинейным эффектам или могло повредить волокно или оптический приемник;

- температурные вариации не должны сказываться на функционировании источника излучения;

- стоимость производства источника излучения должна быть относительно невысокой.

Два основных типа источников излучения, удовлетворяющие перечисленным требования используются в настоящее время – светодиоды (LED) и полупроводниковые лазерные , (LD). 

Главная отличительная черта между светодиодами и лазерными диодами -это ширина спектра излучения. Светоизлучающие диоды имеют широкий спектр излучения, в то время верные диоды имеют значительно более узкий спектр, см. рис 1. Оба типа устройств весьма компактны и хорошо сопрягаются со стандартными электронными цепями.


Рис 1. Спектры излучения светодиодов и лазерных диодов


Светоизлучающие диоды

Благодаря своей простоте и низкой стоимости, светодиоды распространены значительно шире, чем лазерные диоды.        

Принцип работы светодиода основан на излучательной рекомбинации носителей заряда в активной области гетерогенной структуры при пропускании через нее тока, рис. 2. а. Носители заряда – электроны и дырки – проникают в активный слой (гетеропереход) из прилегающих пассивных слоев (р- и n-слоя) вследствие подачи напряжения на р-n структуру и затем испытывают спонтанную рекомбинацию, сопровождающуюся излучением света.

Длина волны излучения X (мкм) связана с шириной запрещенной зоны активного слоя Eg (эВ) законом сохранения энергии λ= 1,24/Еg, рис. 2. б.

Показатель преломления активного слоя выше показателя преломления ограничивающих пассивных слоев, благодаря чему рекомбинационное излучение может распространяться в пределах активного слоя, испытывая многократное отражение, что значительно повышает КПД источника излучения.



Двойная гетероструктура: а) гетероструктура;

б) энергетическая диаграмма при прямом смещении


Гетерогенные структуры могут создаваться на основе разных полупроводниковых материалов. Обычно в качестве подложки используются GaAs и 1пР. Соответствующий композит композиционный состав активного материала выбирается в зависимости от длины волны излучения создается посредством напыления на подложку.

Длину волны излучения λ0 определяют как значение, соответствующее максимуму спектрального распределения мощности, а ширину спектра излучения Δλ0,5 – интервал длин волн, в котором спектральная плотность мощности составляет половину максимальной.

Лазерные диоды


Два главных конструктивных отличия есть у лазерного диода по сравнению со светодиодом. Первое, лазерный диод имеет встроенный оптический резонатор. Второе, лазерный диод работает при значительно больших значениях токов накачки, чем светодиод, что позволяет при превышении некоторого порогового значения получить режим индуцированного излучения. Именно такое излучение характеризуется высокой когерентностью, благодаря чему лазерные диоды имеют значительно меньше ширину спектра излучения (1-2 нм) против 30-50 нм у светодиодов.

Зависимость мощности излучения от тока накачки описывается ватт-амперной характеристикой лазерного диода. При малых токах накачки лазер, испытывает слабое спонтанное излучение, работая как малоэффективный светодиод. При превышении некоторого порогового значения тока накачки Ithres, излучение становится индуцированным, что приводит к резкому росту мощности излучения и его когерентности, рис.3


Рис. 3 Ватт-амперные характеристики: 1 – лазерного диода; 2 -светодиода


Лазер состоит из активной среды, устройства накачки и резонансной системы (рис. 23). Активной средой может быть твердый, жидкий или газообразный материал. Широкое применение получили полупроводники. В качестве устройства накачки используется главным образом электрическая энергия. Могут применяться также солнечная радиация, атомная энергия, химическая реакция и другие источники. Роль резонанса выполняют зеркала или другие полированные поверхности.



Рис. 4 Принципиальная схема лазера:

1 — активная среда; 2 — устройство накачки; 3 — резонансная система


По принципу действия и эффекту светового излучения лазер может быть отнесен к люминесцентным материалам. Известны различные виды люминесценции (свечения): тепловая (лампочка накаливания), холодная (фосфор и другие светящиеся материалы), природная (светлячок, гнилое дерево), химическая (активная реакция) и др. В полупроводниковых лазерах действует электрическая люминесценция — свечение происходит за счет электрической накачки.

Принцип действия квантовых приборов (лазеров) основан на использовании излучения атомов вещества под воздействием внешнего электромагнитного поля. Из квантовой механики известно, что движение электронов атома вокруг ядра характеризует энергетическое состояние электронов, иначе называемое энергетическим уровнем. При переходе электронов с одной орбиты на другую под воздействием внешнего электромагнитного поля меняется энергетический уровень и происходит излучение энергии.

В настоящее время применяются различные типы лазеров: полупроводниковые, твердотельные, газовые и др. Полупроводниковый лазер представляет собой полупроводниковый диод типа р-п, выполненный из активного материала, способного излучать световые кванты—фотоны. В качестве такого материала преимущественно используется арсенид галия с соответствующими добавками (теллура, алюминия, кремния, цинка). В зависимости от характера и количества присадок полупроводник имеет области электронной п (за счет теллура) и дырочной р (за счет цинка) проводимостей.

Под действием приложенного напряжения в полупроводнике происходит возбуждение носителей, в силу чего возникает излучение световой энергии и появляется поток фотонов. Этот поток, многократно отражаясь от зеркал, образующих резонансную систему, усиливается, что приводит к появлению лазерного луча с остронаправленной диаграммой излучения.

Схематично полупроводниковый лазер показан на (рис. 5).


Рис. 5. Полупроводниковый лазер


Объем полупроводника примерно 1 мм3. К нему подведены металлические электроды для подачи электрического напряжения. Роль отражающих зеркал выполняют плоскопараллельные отполированные торцевые грани полупроводника. Излучение происходит в слое р-п перехода толщиной 0,15...0,2 мкм.

Наряду с лазерами в качестве источника оптического излучения могут применяться светодиоды. Светодиод является таким же люминесцентным полупроводником типа р-п из арсенида галия, но не имеет резонансного усиления. В отличие от лазера, обладающего остронаправленным когерентным лучом, в светодиоде излучение происходит спонтанно (самопроизвольно) и луч имеет меньшую мощность и широкую направленность.

Сравнительные характеристики лазеров и светодиодов приведены в табл.5 и на (рис.5).


Таблица 5

Излучатель

Мощность, мВт

Диаграмма, град

Ширина спектра, мм

Срок службы, ч

Лазер Светодиод

10... 40

5...20

4... 20

60... 80

1...3

30... 50

104... 105

105…106


Сравнивая обычный свет, создаваемый, например, лампочкой накаливания, с лазерным лучом, можно отметить, что в обоих случаях действует поток фотонов. Но в отличие от обычного света, основанного на тепловой природе возникновения и излучающего очень широкий непрерывный спектр частот, лазерный луч имеет электромагнитную основу и представляет собой монохроматический (одноволновый) луч.


Рис.25. Ширина спектра лазера (1), светодиода (2)


Лазерный луч обладает рядом замечательных свойств. Он распространяется на большие расстояния и имеет строго прямолинейное направление. Луч движется очень узким пучком с малой степенью расходимости (он достигает луны с фокусировкой в сотни метров). Лазерный луч обладает большой теплотой и может пробивать отверстие в любом материале. Световая интенсивность луча больше, чем интенсивность самых сильных источников света.


Рис. 6. Полупроводниковый фотодиод

В качестве приемного устройства, преобразующего свет в электричество, применяется фотодиод. Здесь используется эффект Столетова, состоящий в том, что при воздействии света на активный материал, например полупроводник, изменяются его электрические свойства и возникает электрический сигнал (рис.6).

Таким образом в лазерах электричество преобразуется в свет, а в фотодиодах происходит обратный процесс: свет преобразуется в электричество.

В магистральных ВОЛС используются два окна 1,3 и 1,55 мкм. Поскольку наименьшее затухание в волокне достигается в окне 1,55 мкм, на сверхпротяженных безретрансляционных участках (L = 100 км) эффективней использовать оптические передатчики именно с этой длиной волны. В то же время на многих магистральных ВОЛС а состав ВОК входят только ступенчатые одномодовые волокна, имеющие минимум хроматической дисперсии в окрестности 1,3 мкм (волокон со смещенной дисперсией нет). На длине волны 1,55 мкм удельная хроматическая дисперсия у SMF составляет 17 пс/нм-км. А поскольку полоса пропускания обратно пропорциональна ширине спектра излучения, то увеличить полосу пропускания можно только меньшая ширину спектра излучения лазера. Итак, для того чтобы оптические передатчики на длине волны 1,55 мкм могли в равной степени использоваться на протяженной линии не только с одномодовым волокном со смещенной дисперсией (DSF), но и со ступенчатым волокном (SMF), необходимо делать ширину спектра излучения передатчиков как можно меньше.

Четыре основных типа лазерных диодов получили наибольшее распространение: с резонатором Фабри-Перо; с распределенной обратной связью; с распределенным брэгговским гражением; с внешним резонатором.

Лазерные диоды с резонатором Фабри-Перо (FP лазеры, Fabry-Perot). Резонатор в таком лазерном диоде образуется торцевыми поверхностями, окружающими с обеих сторон гетерогенный переход. Одна из поверхностей отражает свет с коэффициентом отражения, близким к 100%, другая является полупрозрачной, обеспечивая, таким образом, выход излучения наружу.

На рис. 1 б показан спектр излучения промышленного лазерного диода с использованием резонатора Фабри-Перо. Как видно из рисунка, наряду с главным пиком, в котором сосредоточена основная мощность излучения, существуют побочные максимумы. Причина их возникновения связана с условиями образования стоячих волн. Для усиления света определенной длины волны необходимо выполнение двух условий. Первое, длина волны должна удовлетворять соотношению 2D = NΔλ где D – диаметр резонатора Фабри-Перо, а N – некоторое целое число. Второе, длина волны должна попадать в диапазон, в пределах которого свет может усиливаться индуцированным излучением. Если этот диапазон достаточно мал, то имеет место одномодовый режим с шириной спектра меньше 1 нм. В противном случае в область Δλ0,5 могут попасть два или более соседних максимумов, что соответствует многомодовому режиму с шириной спектра от одного до нескольких нм. FP лазер имеет далеко самые высокие технические характеристики, но для тех приложений, где не требуется высокая высокая скорость передачи данных, он, в силу более простой конструкции, наилучшим образом подходит с точки зрения цена-эффективность.

Страницы: 1, 2, 3


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.