рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Электрические аппараты

Следует отметить, что электромеханические реле времени достаточно просты по конструкции и обладают большой ударо-, вибро- и износостойкостью. Допустимое число включений достигает 600 в час. Они могут использоваться в схемах автоматики и электропривода как реле тока, напряжения и промежуточные. Коэффициент возврата их низок и составляет 0,1—0,3. Короткозамкнутые витки создают электромагнитное замедление как при притяжении, так и при отпускании якоря. Поэтому токовые реле с короткозамкнутым витком не реагируют на кратковременные перегрузки. При кратковременных перегрузках МДС обмотки пропорциональна этим перегрузкам.

Поток в магнитопроводе нарастает с постоянной времени , определяемой параметрами короткозамкнутого витка . Если перегрузка кратковременна и ее длительность , то поток к моменту не достигнет значения потока срабатывания и якорь останется неподвижным. Если , то реле сработает. Таким образом, предотвращается отключение нагрузки (двигателя) при больших, но кратковременных токовых перегрузках, не опасных для двигателя.





Рис.7. Регулирование времени отпускания с помощью пружины и регулирование времени отпускания изменением немагнитного зазора


Промышленностью выпускаются многочисленные модификации реле с электромагнитным замедлением и выдержкой времени при отпускании 0,3—5 с.

Современные реле имеют один или два унифицированных контактных узла. Каждый узел имеет один замыкающий и один размыкающий контакты с общей точкой. Постоянный ток включения контактов составляет 10 А при напряжении 110 В и 5 А при 220 В. Ток отключения для индуктивной нагрузки (катушки реле, контакторов) составляет 0,2, для активной 0,5 А.

Реле с электромагнитным замедлением выполняют только на постоянном токе путем замедления времени нарастания магнитного потока при срабатывании реле и времени спадания тока при отпускании.


Реле с электромагнитным замедлением РЭ-100 – РЭ-570

Принцип электромагнитного замедления используется в ряде конструкций реле (реле типа РЭ-100, РЭ-180, РЭ-500, РЭ-570 и др.). Реле типа РЭ имеют магнитную систему клапанного типа с короткозамкнутым витком (втулкой), и только реле РЭ-100 может выполняться и без короткозамкнутого витка. Эти реле выпускаются на напряжения 48, 110 и 220В. Мощность, потребляемая обмотками, 20—25 Вт, мощность контактов реле дана в табл. 1.

При работе реле используется выдержка времени, даваемая ими при отпускании якоря. Для реле РЭ-100 и РЭ-500 может быть получена выдержка порядка 0,25—0,9 сек. Для реле РЭ-180 и РЭ-560 выдержка времени 1—3 и 3—5 сек.

Собственное время притяжения якоря реле при наличии короткозамкнутого витка примерно в 3 раза больше, чем без него.

Лекция №15


Тема лекции:

Полупроводниковые реле. Устройство, параметры

Полупроводниковые реле

а) Общие сведения. Полупроводниковые реле в отношении быстродействия, чувствительности, селективности и надежности превосходят электромагнитные. В ряде случаев полупроводниковые реле обладают характеристиками, которые невозможно получить с помощью электромагнитных реле.

Полупроводниковые реле защиты содержат измерительный орган и логическую часть. В измерительном органе непрерывные входные величины преобразуются в дискретный выходной сигнал. Дискретный выходной сигнал поступает на вход логической части, выдающей управляющий сигнал чаще всего на электромагнитное реле.

Измерительный орган полупроводникового реле тока обычно имеет на входе трансформатор тока, нагруженный на малое активное сопротивление. Напряжение на этом сопротивлении пропорционально первичному току в контролируемой сети.

В измерительных органах используются следующие три принципа:

1)  сравнение однородных физических величин, например напряжений. В момент равенства измеряемого и опорного напряжений на выходе появляется нулевой сигнал, который приводит к срабатыванию нуль-органа. На выходе появляется дискретный сигнал. Регулируя опорное напряжение, можно менять уставку срабатывания. Реализация такого принципа показана на рис. 15.1. Выпрямленный сигнал, пропорциональный напряжению или току, подается на мост RJ, R2, R3, VD1. В момент равенства напряжений на R2 и VDI на выходе моста появляется нулевой сигнал, который приводит в действие нуль-орган. Главным источником погрешности полупроводниковых реле является зависимость параметров полупроводниковых приборов от температуры. Поэтому в схемы вводится температурная компенсация. В данной схеме для температурной компенсации последовательно со стабилитроном VD1 включается в прямом направлении диод. С ростом температуры у стабилитрона падение напряжения растет, а у диода в проводящем направлении падает;

 





Рис. 15.1. Измерительный орган со стабилитроном


2)  проявление физического эффекта, возникающего при определенном значении измеряемого напряжения, — скачок в нелинейной характеристике туннельного диода, релейная характеристика триггера Шмидта и др.;

3)преобразование непрерывного входного сигнала и опорного напряжения в цифровую форму. После этого производится сравнение входного сигнала с опорным напряжением. Обработка входного сигнала в цифровой форме может производиться по требуемому алгоритму вычислительного устройства. Последний принцип наиболее перспективен ввиду высокой универсальности и развития вычислительной техники.

Функциональная схема трехфазного полупроводникового реле тока представлена на рис. 15.2. Пропорциональные токам напряжения трех фаз подводятся к промежуточным трансформаторам Т1ТЗ. Между первичной и вторичной обмотками установлен экран. На выходе трансформаторов включены нелинейные резисторы. Эти мероприятия защищают усилители ОУ от перенапряжений. Сигнал со вторичных обмоток трансформаторов, пропорциональный контролируемому току, подается на входы ОУ А1A3. На эти же усилители подается опорное напряжение с резистора R. Входные и опорные напряжения сравниваются между собой. При их равенстве на выходе усилителей А1A3 появляется выходной сигнал, который через элемент ИЛИ (§ 12.6), блок расширения импульса А5 и оконечный усилитель А4 подается на исполнительный орган. В блоке А5 кратковременный импульс преобразуется в импульс большей длительности. Светоизлучаюшие диоды VD1VD3 сигнализируют о фазе, в которой произошла перегрузка.


Рис. 15.2. Трехфазное полупроводниковое реле тока


Для того чтобы схема не реагировала на кратковременные и безопасные для защищаемой цепи перегрузки, вводится выдержка времени (рис. 15.3). Для этого один сигнал с элемента ИЛИ подается на элемент И непосредственно, второй — с выдержкой времени, определяемой цепочкой Rl, C1. Сигнал на выходе реле появляется только тогда, когда на элемент И придут оба сигнала.


 







Рис. 153. Реле тока с выдержкой времени


б) Реле тока с выдержкой времени, зависящей от тока. В таких реле используются и аналоговые, и дискретные схемы. На рис. 15.4 в качестве примера показана функциональная схема полупроводникового токового расцепителя автоматического выключателя серии «Электрон». Напряжения, пропорциональные токам в фазах, через промежуточные трансформаторы подаются на выпрямитель, после чего поступают на резисторы Rl, R2, R4. Пропорциональный току сигнал И (I) с Rl подается на суммирующий блок , на который приходит сигнал U(t), снимаемый с цепочки временной задержки R3, С1. Канал сигнала U(t) начинает работать, когда под действием тока перегрузки срабатывает полупроводниковое реле К1. Когда суммарный сигнал  достигает порога срабатывания полупроводникового реле КЗ, оно выдает сигнал на тиристорный усилитель А, воздействующий на обмотку электромагнита расцепителя К5.

в) Реле защиты от замыканий на землю. Реле применяется в схемах защиты при замыканиях на землю генераторов, двигателей и линий с малыми токами замыкания на землю. Основные параметры реле: ток срабатывания j регулируется в пределах 0,02—0,12 А; коэффициент возвврата не менее 0,93; коммутируемое напряжение не более 250 В; механическая износостойкость 104 циклов; электрическая износостойкость не менее 103 циклов.


 







Рис. 15.4. Полупроводниковый расцепитель для управления автоматическим выключателем серии «Электрон»


Схема реле представлена на рис. 15.5. Измерительный орган реле содержит промежуточный трансформатор ТА и резисторы R2R7, которые вместе с выключателями SB1SB5 служат для дискретной регулировки тока срабатывания. При отключенных выключателях ток срабатывания реле минимален. По мере включения R3—R7 уменьшается напряжение на выходе операционного усилителя А1. и ток срабатывания увеличивается. Диоды VD1VD4 служат для ограничения сигнала на входе А1. При большом входном сигнале трансформатор ТА насыщается и его входное сопротивление падает. Резистор R1 ограничивает ток в цепи трансформатора, ТА.

Операционный усилитель А1 работает как активный фильтр. Многоконтурная отрицательная обратная связь с помощью резисторов R8, R9, R10 и конденсаторов CI, C2 позволяет отфильтровать высшие гармоники в сигнале и оставить основную частоту 50 Гц.

Сравнивающая часть реле состоит из порогового элемента на операционном усилителе А2, время-измерительной цепи. VD5, R15, R16, С8 и триггера Шмидта на операционном усилителе A3. Конденсаторы СЗ—С10 служат для стабилизации работы усилителя, исключая его самовозбуждение. Резистор R17 создает положительную обратную связь. Выходной каскад реле выполнен на транзисторе VT1, в цепь коллектора которого включено быстродействующее электромагнитное реле К.

Питание схемы осуществляется от сети постоянного тока (контакты 4, 1 при напряжении 220 В и 4, 2 при напряжении 110 В) или от сети переменного тока 100 В (контакты 4, 3). С помощью стабилитронов VD6 и VD7 получаются два симметричных напряжения —15 В и +15 В для питания операционных усилителей.

Порог срабатывания порогового элемента определяется резисторами R11—R14. Настройка реле на минимальную уставку производится резистором R11.












Рис. 15.5. Реле защиты от замыканий на землю


г) Реле защиты асинхронных двигателей (РЗД). Реле (рис. 15.6) обеспечивает защиту асинхронных двигателей от больших перегрузок и неполнофазных режимов. В цепи вторичных обмоток трансформаторов тока через мосты VI—V3 включены нагрузочные резисторы, напряжения на которых пропорциональны токам двигателя. Конденсаторы С/—СЗ сглаживают пульсации напряжения. Эти напряжения через диоды VD1—VD3 приложены к потенциометру Rl, напряжение с которого поступает на пороговый элемент К1. Если токи в фазах двигателя не превышают номинальное значение, то напряжение на входе К.1 недостаточно для его срабатывания. Если токовая перегрузка превышает допустимую, то К1 срабатывает и запускает промежуточное реле К4, которое подает сигнал на цепь задержки R4, С4. Напряжение с конденсатора С4 подайся на пороговый элемент КЗ, усилитель А и выходное электромагнитное реле К, контакты которого включены в цепь катушки пускателя или электромагнитного расцепителя автомата.

Если длительность перегрузки меньше, чем время задержки в цепи R4, С4, то двигатель не отключается. При нормальном пуске или допустимой технологической перегрузке благодаря наличию цепи задержки двигатель не отключается. Если длительность перегрузки больше, чем время задержки, то двигатель обесточивается. При обрыве одной фазы, например фазы А, пропадает напряжение на нагрузочном резисторе R3 этой фазы. Поскольку фазы В и С остались под током, то на выходе MN имеется напря жение {/Вых указанной полярности. Под действием этого напряжения протекает ток через резистор R3, диод VD4, который открывается, и потенциометр R2. Напряжение с потенциометра R2 прикладывается к пороговому элементу К2, который срабатывает. После этого действует цепочка К4, R4, С4, КЗ, А, К и происходит отключение двигателя.

 


Рис. 15.6. Реле защиты асинхронных двигателей

д) Трехфазные реле напряжения. В схеме трехфазного реле напряжения (рис. 15.7) напряжение срабатывания регулируется резистором R1. Реле может работать как максимальное (переключатель S в положении /) и как минимальное (переключатель 5 в положении 2). Коэффициент возврата реле регулируется в широком диапазоне с помощью резистора R2, которым изменяется коэффициент положительной обратной связи в усилителях AI, A2, A3. Логический элемент И обеспечивает срабатывание реле в случае, когда напряжение хотя бы в одной фазе падает ниже допустимого (при S в положении 2).

Для защиты электродвигателей, тиристорных преобразователей, других трехфазных потребителей при недопустимом снижении симметричного напряжения, асимметрии междуфазных напряжений, обратном чередовании фаз служит реле ЕЛ-10-1 (с выдержкой времени) и ЕЛ-10-2 (без выдержки времени). Структурная схема этого реле приведена на рис. 15.8. На входе реле включены пороговые элементы ПЭ1, ПЭ2, ПЭЗ, образующие пороговый блок ПБ. С выхода ПБ система полученных в нем прямоугольных импульсов (рис. 12.23) поступает в логический блок ЛС, на триггеры 77, Т2 и логический элемент И. Полученная в ЛС система прямоугольных импульсов через дифференцирующую цепочку RC подается на схему временной уставки СВУ, которая с выдержкой времени открывает транзистор VT выходного усилителя ВУ. Если контролируемое напряжение симметрично и близко к номинальному значению, то выходные импульсы ЛБ не приводят к срабатыванию СВУ и ВУ.

Когда изменения трехфазного напряжения или порядка чередования фаз выходят за пределы допустимых, на выходе ЛС исчезает показанная на рис. 12.23 последовательность импульсов. При этом по истечении выдержки времени в СВУ выдается сигнал на ВУ и выходное реле срабатывает. Допустим, исчезло напряжение в фазе А. При этом перестает работать триггерТ1и на выходе логического элемента И появится логический 0. Триггер Т2 тоже перестает переключаться. На выходе RС-цепочки сигнал пропадает, на вход СВУ и ВУ не подается сигнал ЛС, и реле К отключает цепь. Реле срабатывает при снижении напряжения в одной из фаз до 55 — 65 % Uном при номинальном напряжении в остальных. При обрыве двух или трех фаз одновременно или при обратном следовании фаз реле срабатывает при напряжении 70 — 75 % Uном. Коэффициент возврата реле не менее 0,9. Время срабатывания реле ЕЛ-10-1 не превышает 5 с. Реле не срабатывает при колебании симметричного напряжения в пределах 85—110 %-ном.


Рис. 15.7. Трехфазное реле напряжения

 


Рис. 15.8. Структурная схема реле напряжения

е) Полупроводниковые реле времени. Благодаря большому диапазону выдержек времени (от 0,1 с до 100 ч), высокой надежности и точности, а также малым габаритам в настоящее время эти реле широко распространены. В схеме простейшего полупроводникового реле времени 15.9 при замыкании контакта 1напряжение на конденсаторе С растет по экспоненте с постоянной времени Т=RC. Напряжение Uc подается на пороговый элемент. При равенстве Uc пороговому напряжению Uп пороговый элемент срабатывает и с выдержкой времени tср выдает сигнал на усилитель мощности, который управляет выходным электромагнитным реле. Возможно использование разряда конденсатора (замыкается контакт 2). Процесс разряда идет по кривой 2 (рис. 15.9,б). Такие реле работают на начальных участках кривых 1 и 2. Выдержку времени регулируют за счет изменения сопротивления R (плавно) и емкости конденсатора С (скачкообразно). Предельная выдержка времени — до 10 с. При больших выдержках времени погрешность реле возрастает, так как экспонента становится пологой. Этим ограничивается выдержка времени таких реле. Для повышения точности заряд конденсатора производят через токостабилизирующее устройство.

Схема реле и процесс заряда конденсатора показаны на рис. 15.9. Поскольку напряжение на базе транзистора стабилизировано, то коллекторный ток не зависит от напряжения на коллекторе (генератор тока). Ток заряда устанавливается резистором R1. Чем больше ток заряда, тем меньше выдержка времени. Стабилитрон VD делает неизменным напряжение на резисторе R1, что позволяет получить постоянное время срабатывания при данном положении движка потенциометра.


 








Рис. 15.9. Полупроводниковое реле времени:

в — принципиальная схема; б — процессы заряда / и разряда 2 конденсатора


С целью увеличения выдержки времени можно использовать заряд конденсатора от источника импульсного напряжения. При каждом импульсе напряжение на конденсаторе поднимается на небольшую величину, после чего во время паузы остается неизменным. Такое реле позволяет увеличить выдержку времени. Дело в том, что во время паузы напряжение на емкости не меняется и это время паузы входит в выдержку времени реле. Тем самым уменьшается погрешность за счет нелинейности кривой заряда.

ж) Цифровые реле времени. В цифровом реле времени управляющее устройство запускает генератор. Импульсы от генератора подаются на вход не-синхронизируемого двоичного счетчика. В момент совпадения кода времени с заданной уставкой сигнал дешифратора скачкообразно меняется и выходной импульс подается на усилители.

После каждого цикла счетчик переводится в нуль. Приведенная погрешность описанных реле времени не превышает 5 %. Коммутационная износостойкость составляет не менее 4*106 циклов.

Лекция №16


Тема лекции:

Бесконтактные контакторы и пускатели на базе тиристорных элементов.

Бесконтактные коммутирующие и регулирующие полупроводниковые устройства переменного тока (БКРПУ)

а) Общие сведения. На основе тиристоров возможно осуществление следующих операций:

1)   включение и отключение электрической цепи с активной и смешанной (индуктивной и емкостной) нагрузкой;

2)   изменение тока нагрузки за счет регулирования момента подачи сигнала управления.

Наиболее широкое применение в бесконтактных электрических аппаратах получили фазовое и широтно-импульс-ное управление (рис. 16.1).

В первом случае среднее и действующее значения тока меняются зa счет изменения момента подачи на тиристор открывающего сигнала — за счет угла . Угол  называется углом управления. Действующее напряжение на нагрузке при двухполупериодной схеме и встречно-параллельном включении двух тиристоров (рис. 16.2)



где Uт — амплитуда напряжения питания; Uc, Uно — действующее и среднее значения напряжения питания; у — угол регулирования.









Рис. 16.1. Напряжение на нагрузке при фазовом (а), фазовом с принудительной коммутацией (б) и широтно-импульсном (в) управлении

 







Рис. 16.2. Встречно-параллельное включение тиристоров (а) и форма тока при активной нагрузке (б)


Кривая тока в сети и в нагрузке не синусоидальна, что вызывает искажение формы напряжения сети и нарушения в работе потребителей, чувствительных к высокочастотным помехам. Для уменьшения этих искажений необходимы специальные меры.

При широтно-импульсном управлении (рис. 12.46, в) в течение времени Тоткр на тиристоры подан открывающий сигнал, они открыты и к нагрузке приложено напряжение UH. В течение времени Тзакр управляющий сигнал снят и тиристоры закрыты. Действующее значение тока в нагрузке

 




где — ток нагрузки при Тзакр=0.

Регулирование тока нагрузки возможно за счет изменения как угла , так и угла . Принудительная коммутация (<18О°) осуществляется с помощью специальных узлов или специальных тиристоров, которые могут запираться подачей сигнала управления. При больших токах из-за сложности такие схемы не применяются. Создание транзисторов на большие токи (сотни ампер) и большие напряжения (сотни вольт) позволяет упростить принудительную коммутацию цепей постоянного и переменного тока, что особенно важно в аппаратах повышенного быстродействия.

На основе тиристоров работают следующие бесконтактные электрические аппараты:

1)  тиристорные пускатели для прямого пуска асинхронных двигателей;

2)  тиристорные пускатели для плавного пуска, реверса и останова асинхронных двигателей большой мощности (до 5000 кВт);

3)  регуляторы мощности и напряжения;

4)  автоматические выключатели переменного тока высокого и низкого напряжения повышенного быстродействия;

5)  регулирующие аппараты для управления двигателями электрического транспорта переменного тока с рекуперацией энергии при торможении.

Для тиристорных аппаратов, как правило, необходима защита от токов перегрузки и КЗ, а также от недопустимого повышения температуры корпусов тиристоров. Защита от КЗ в данном случае осуществляется с помощью быстродействующих токоограничивающих предохранителей или автоматических выключателей.

Ниже приводятся основные технические данные тиристорных пускателей и регуляторов, выпускаемых отечественной промышленностью.

Пускатели тиристорные серии ПТ. В фазах А и В пускателя (рис. 16.3) установлены трансформаторы тока ТА1 и ТА2, обеспечивающие работу устройства токовой зашиты. Защита тиристоров от перегрузки осуществляется терморезистором Rt. Поскольку пускатель предназначен для реверса двигателя, то в фазах А и В установлены дополнительные комплекты встречно включенных тиристоров. При нажатии кнопки «Пуск вперед» включается реле KI, которое подает напряжение на управляющие электроды тиристоров, участвующих в пуске «Вперед». При нажатии кнопки «Пуск назад» включается реле КЗ и подастся напряжение на управляющие электроды тиристоров, участвующих в пуске «Назад». Питание блока защиты и реле К1 и КЗ осуществляется выпрямителем, питающимся от фаз В и С.

Основные параметры пускателя: Uном — 380 В; Iном—40 А; Iпуск = 360 А при tпуск =0,4с; электрическая износостойкость циклов; ресурс работы не менее 10 000 ч.

 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.