рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Электроснабжение нефтеперерабатывающего завода

- на реконструируемых предприятиях, имеющих напряжение 6 кВ в качестве основного для внутризаводского распределения электроэнергии.

При напряжении распределительной сети 10 кВ и небольшом числе двигателей средней мощности (350...800 кВт) следует применять напряжение 6 кВ с использованием схемы блока трансформатор — двигатель.

Напряжение 3 кВ в качестве основного напряжения распределительной сети на новых предприятиях не применяют. Оно не рекомендуется также и в качестве подсобного для питания электродвигателей средней мощности при основном напряжении распределительной сети 10 кВ.

Напряжение 380 В применяют для питания силовых общепромышленных электроприемников.

Напряжение 660 В рекомендуется для применения в следующих случаях:

- если по условиям генплана, технологии и окружающей среды не могут быть осуществлены в должной мере глубокие вводы, дробление цеховых подстанций и приближение их к центрам питаемых ими групп электроприемников и в связи с этим имеют место протяженные и разветвленные сети напряжением до 1000 В, а также при крупных концентрированных нагрузках; такое положение может быть в некоторых отраслях химической промышленности, на лесопромышленных комплексах и в аналогичных производствах;

- при первичном напряжении распределительной сети 10 кВ и при отсутствии на данном предприятии двигателей таких мощностей, которые не изготовляются на напряжение 660 В (за исключением мелких), т. е. в тех случаях, когда не потребуется введение промежуточного напряжения между 10 и 0,66 кВ;

- при больших плотностях нагрузок и мощных цеховых трансформаторах (более 1000 кВА), при которых токи короткого замыкания на стороне вторичного напряжения возрастают до недопустимых для аппаратов величин при напряжении 0,4 кВ.

Проектируемый завод бензинов расположен от источника питания на расстоянии 2 км, следовательно потери в линии небольшие, поэтому мой выбор на первой ступени распределения электроэнергии пал на напряжение 110кВ.

На предприятии имеются в наличии элктроприемники на напряжение 6 кВ, поэтому на второй ступени выбираю 6кВ.


3 Показатели качества электроэнергии


Обеспечение качества электроэнергии на зажимах приемников электроэнергии — одна из наиболее сложных задач, решаемых в процессе проектирования и эксплуатации систем электроснабжения. Появление в системах электроснабжения мощных электродвигателей, вентильных преобразователей и других приемников с резкопеременной нагрузкой создало проблему их электромагнитной совместимости с системой электроснабжения, успешное решение которой обеспечивает рациональную работу как этих приемников, так и приемников со спокойной нагрузкой, присоединенных к той же системе (освещение, электродвигатели длительного режима работы и др.).

Показатели качества электроэнергии регламентируются требованиями ГОСТ 13109—97.

К показателям качества электроэнергии для трехфазных сетей переменного тока относятся следующие:

- отклонение напряжения;

- колебание напряжения;

- коэффициенты несимметрии и неуравновешенности напряжений;

- коэффициент несинусоидальности напряжения;

- отклонение частоты;

- колебания частоты.

Соответствие перечисленных параметров ГОСТу способствует увеличению выпуска продукции и общей рентабельности производства.

Отклонение напряжения V — это разность действительного значения напряжения U и его номинального значения Uн для сети, возникающая при сравнительно медленном изменении режима работы, когда скорость изменения напряжения меньше 1% в секунду:

При понижении напряжения возрастает скольжение и уменьшается частота вращения асинхронных двигателей, являющихся основными приемниками электроэнергии. При этом возрастает сила потребляемого тока, двигатели перегреваются и быстрее изнашивается изоляция. Вращающий момент асинхронного двигателя пропорционален квадрату напряжения, поэтому при его понижении затрудняются пуск и самозапуск двигателей под нагрузкой. В связи с этим установлены пределы отклонения напряжения на зажимах электродвигателей, станций управления от — 5 до +10%.

Весьма чувствительны к изменению напряжения косинусные конденсаторы. Их реактивная мощность пропорциональна квадрату подводимого напряжения. Таким образом, при понижении напряжения на 10% мощность конденсатора снизится до 81%. Повышение напряжения на 10% увеличивает реактивную мощность конденсатора до 121% и приводит к его перегрузке, поэтому для конденсаторов допускается увеличение напряжения не более чем на 10%.

Значительное влияние отклонение напряжения оказывает на работу электросварочных установок, ухудшая качество сварки. Для рационального ведения этого процесса отклонение напряжения на сварочных установках должно составлять +5%.

Высокие требования к качеству напряжения предъявляют осветительные установки. При отклонениях напряжения изменяются сила света ламп накаливания и срок их службы. Сила света изменяется при этом пропорционально изменению напряжения в третьей — четвертой степени. Повышение напряжения на 10% сокращает срок службы ламп накаливания примерно в 3 раза.

ГОСТ 13109—97 допускает отклонения напряжения на зажимах электроосветительных приборов от — 2,5 до +5%.

Под колебанием напряжения Vt, подразумевается изменение напряжения в сети со скоростью более 1%:


Vt= Uнб-Uнм,                                                                                    (3.1)

где Uнб и Uнм — соответственно наибольшее и наименьшее действующие напряжения в кратковременном процессе его изменения, %.

Колебания напряжения ограничиваются частотой их возникновения. Для зрительного восприятия наиболее опасными считаются колебания с частотами в пределах 1...10 Гц. Их значение при этом ограничивается величиной порядка 1%. Если число колебаний в час не превышает 10, то это значение возрастает до 1,5%, при числе колебаний не более 1 раза в час — до 4%.

Допустимые значения колебаний напряжения в сетях, от которых питаются электроосветительные установки и радиоприборы, определяют по формуле


 %                                                                      (3.2)


где т — частота колебаний в час, 1/ч; ∆t— средний интервал между последовательными колебаниями, мин.

Для обеспечения нормируемого ГОСТ 13109—97 режима напряжения применяются различные способы и средства регулирования напряжения.

Способы регулирования:

- регулирование напряжения на шинах центра питания;

- изменение сопротивления элементов сети;

- изменение силы реактивного тока, протекающего в сети;

- изменение коэффициента трансформации трансформаторов и автотрансформаторов (линейных регуляторов).

Средства регулирования:

- трансформаторы с регулированием напряжения под нагрузкой (РПН):

- линейные регуляторы;

- управляемые батареи конденсаторов;

- синхронные двигатели с автоматическими регуляторами возбуждения.

Кроме того, можно использовать трансформаторы с переключением без возбуждения (ПБВ), неуправляемые батареи конденсаторов, синхронные двигатели без автоматического регулирования возбуждения.

Несимметрия напряжений и токов трехфазной системы один из важнейших показателей качества электрической энергии. Причина появления несимметрии, напряжений и токов — различные несимметричные режимы системы электроснабжения. Широкое применение однофазных установок значительной мощности различного рода привело к значительному увеличению доли несимметричных нагрузок. Подключение таких мощных несимметричных однофазных нагрузок к трехфазным сетям вызывает в системах электроснабжения длительный несимметричный режим, характеризующийся несимметрией напряжений и токов.

В системах электроснабжения различают кратковременные (аварийные) и длительные (эксплуатационные) несимметричные режимы. Кратковременные несимметричные режимы обычно связаны с различными аварийными процессами, например несимметричными короткими замыканиями, обрывами одного или двух проводов воздушной линии с замыканием на землю и т. п. Длительные несимметричные режимы обычно обусловлены несимметрией элементов электрической сети или подключением к системе электроснабжения несимметричных нагрузок.

Несимметрия напряжений и токов, обоусловленная несимметрией элементов электрической сети, называется продольной. Примером продольной несимметрии могут служить неполнофазные режимы воздушных линий. Несимметрия характерна также для специальных систем электропередачи: два провода — земля (ДПЗ); два провода — рельсы (ДПР), два провода — труба (ДПТ) и т. д.

Несимметрия напряжений и токов, вызванная подключением к сети много- и однофазных несимметричных нагрузок, называется поперечной.

Несимметрия характеризуется коэффициентом несимметрии напряжения Кн — отношение напряжения обратной последовательности основной частоты U2 к номинальному линейному напряжению U1:


%                                                                                 (3.3)


и коэффициентом неуравновешенности напряжения — отношением напряжений нулевой последовательности основной частоты Uo к номинальному фазному напряжению Uн:


%                                                                               (3.4)


Коэффициент несимметрии напряжений служит нормированным показателем качества электрической энергии. В соответствии с ГОСТ 13109—97 % длительно допустим на зажимах любого трехфазного симметричного приемника электрической энергии. В случаях, когда коэффициент несимметрии оказывается больше, должны быть приняты меры к его снижению.

Несимметрия напряжений в системах электроснабжения оказывает значительное влияние на работу отдельных элементов сети и приемников электрической энергии. При несимметрии напряжений, обусловленных несимметричной нагрузкой, в статорах синхронных машин проходят токи прямой, обратной и нулевой последовательности, что вызывает нагрев ротора и увеличение вибрации, в некоторых случаях опасной для конструкции машин.

Особенно неблагоприятно несимметрия напряжений сказывается на работе и сроке службы асинхронных машин. При несимметрии напряжений конденсаторные установки неравномерно загружаются реактивной мощностью по фазам, мощность многофазных выпрямителей снижается.

При несимметричном режиме токи нулевой последовательности постоянно проходят через заземлители и отрицательно сказываются на их работе, вызывая высушивание грунта и увеличение сопротивления растеканию. Они оказывают значительное влияние на низкочастотные каналы проводной связи, сигнализации и автоблокировки.

Несинусоидальность формы кривой напряжения и тока. Широкое внедрение приемников электрической энергии с нелинейными вольт-амперными характеристиками, определяемое потребностями увеличения экономической эффективности производства, привело к отрицательному влиянию этих приемников на электрические параметры режима сети.

К элементам систем электроснабжения (СЭС) с нелинейными вольт-амперными характеристиками относятся вентильные преобразователи (ртутные и полупроводниковые), установки электросварки, газоразрядные источники света, а также трансформаторы и электродвигатели. Характерная особенность этих устройств — потребление ими из сети несинусоидальных токов при подведении к их зажимам несинусоидального напряжения.

Высшие гармонические токи и напряжения обусловливают дополнительные потери электроэнергии, приводят к нагреву электрооборудования и увеличивают интенсивность старения его изоляции и изоляции кабелей. Особенно неблагоприятное влияние эти гармоники оказывают на работу конденсаторных батарей, вызывая дополнительные потери и даже выход их из строя.

Токи высших гармоник, проходя по элементам сети, вызывают падения напряжения в сопротивлениях этих элементов, которые, накладывала на основную синусоиду напряжения, приводят к искажению формы кривой напряжения.

Степень несинусоидальности напряжения сети принято характеризовать коэффициентом несинусоидальности напряжения Кнс, который представляет собой отношение действующего значения гармонической составляющей несинусоидального напряжения к напряжению основной частоты, %:


,                                                                            (3.5)


где Uv, U1 — действующие значения соответственно v-й и 1-й гармоник напряжения.

ГОСТ 13109—97 нормирует форму кривой напряжения у приемников электроэнергии, допуская отклонение действующего напряжения всех высших гармоник от действующего напряжения основной частоты не более 5%.

Для снижения уровня влияния высших гармоник на напряжение устанавливают силовые фильтры, уменьшают число фаз I выпрямления.

Отклонение частоты ∆f—разность действительного f и номинального fн значений основной частоты:в Гц


                                                                                       (3.6)


или в %


                                                                                (3.7)


В нормальном режиме работы энергетической системы допускаются отклонения частоты, усредненные за 10 мин, ±0,1 Гц. Допускается временная работа энергетической системы с отклонением частоты, усредненным за 10мин, ±0,2 Гц.

Колебания частоты — это изменения частоты, происходящие со скоростью 0,2 Гц/с. Колебания частоты δf— разность наибольшего fнб и наименьшего fнм значений основной частоты за определенный промежуток времени: в Гц


                                                                                              (3.8)


или в роцентах


.                                                                            (3.9)


В установившемся режиме частота во всей энергетической системе (связанной сетями переменного тока) одинакова и определяется частотой вращения генераторов. Однако частота вращения генераторов определяется частотой вращения первичных двигателей — турбин, которые имеют специальный регулятор частоты вращения (первичное регулирование), обладающий сравнительно большой инерцией (до 5%). Это значит, что частота вращения турбин зависит от механической нагрузки на ее валу и определяется расходом энергоносителя (пар, вода). Электрическая нагрузка турбин непрерывно изменяется, поэтому должна изменяться и частота вращения генераторов (турбогенераторов); при росте нагрузки частота вращения (и частота сети) снижается, а при уменьшении возрастает.

В настоящее время поддержание допустимого размаха колебаний частоты в энергетических системах во время аварийного отключения источников питания обеспечивается устройствами аварийной автоматической разгрузки по частоте (ААРЧ), которые отключают часть менее ответственных потребителей.

Нормализация параметров качества электроэнергии в каждом отдельном случае решается по-разному.

Значения показателей качества электроэнергии должны находиться в допустимых пределах с вероятностью 0,95 за установленный период времени. Показатели качества, выходящие за допустимые пределы с верояностью не более 0,05, должны в случае необходимости ограничиваться по величине и длительности по согласованию с энергоснабжающей организацией.

Согласно ГОСТу, проектные и эксплуатирующие организации должны предусматривать применение экономически обоснованных устройств и мероприятий, обеспечивающих нормированное качество электроэнергии у ее приемников. Решения отдельных организаций по размещению регулирующих и компенсирующих устройств в питающих и распределительных сетях, а также по снижению колебаний, несимметрии и несинусоидальности напряжения должны быть взаимно согласованы на основе технико-экономических обоснований.

Для обеспечения показателей качества электроэнергии у приемников по согласованию между электроснабжающей организацией и потребителем должны быть установлены значения показателей качества электроэнергии на границе раздела балансовой принадлежности электрических сетей. Контроль качества электроэнергии на границе раздела балансовой принадлежности должен осуществляться энергоснабжающей организацией и потребителем. Следует отметить, что практически все показатели качества электроэнергии по напряжению зависят от потребляемой промышленными электроприемниками реактивной мощности. Поэтому вопросы качества электроэнергии необходимо рассматривать в непосредственной связи с вопросами компенсации реактивной мощности.


4 Определение расчетных электрических нагрузок


Начальным этапом проектирования системы электроснабжения является определение электрических нагрузок. От правильной оценки ожидаемых нагрузок зависят капитальные затраты на систему электроснабжения, эксплуатационные расходы, надежность работы электрооборудования.

Определение электрических нагрузок производится для правильного выбора количества и мощности трансформаторов, проверки токоведущих элементов по нагреву и потери напряжения, правильного выбора защитных устройств и компенсирующих установок.

Результаты расчетов нагрузок являются исходными материалами для всего последующего проектирования. Для определения расчетных нагрузок групп приемников необходимо знать установленную мощность (сумма номинальных мощностей всех электроприемников группы) и характер технологического процесса.

Расчетная нагрузка определяется для смены с наибольшим потреблением энергии данной группы электроприемников, цехом или предприятием в целом для характерных суток.


4.1 Расчетная нагрузка насосной №2


Расчет ведется по коэффициенту спроса и установленной активной мощности.

Пример расчета:


Насосы:  ,  

                                                                         (4.1)

                                                                          (4.2)

                                                                        (4.3)

кВт.

 кВар.


Результаты расчетов сводим в таблицу 4.1.


Таблица 4.1 –Электрооборудование насосной №2 завода бензинов.

№ НА ПЛАНЕ

n

НАИМЕНОВАНИЕ ЭО

КИ

cos φ

КС

Р,кВт

Ррасч н.н, кВт

Qрасч.н.н. кВар

1..15

15

Насосы

0,65

0,8

0,75

75

843,7

472,5

16…26

10

Двигатели электрозадвижек

0,35

0,6

0,4

30

120

144

27…37

10

Вентиляторы

0,55

0,8

0,67

22

147

82,5

ИТОГО






1645

1110,7

699


Суммарные мощности электрооборудования по насосной №2:


кВт.

кВар.

 кВА.


Суммарная средняя мощность всех электроприемников:


 кВт.


Групповой коэффициент использования:


4.2 Расчетные нагрузки для остальных цехов завода


Расчет производится по коэффициенту спроса (КС)

4.2.1 Определение расчетных электрических нагрузок на низшем (0,38кВ) напряжении

Компрессорная №1:

Коэффициент спроса и cosφ зависят от технологии производства и приводятся в отраслевых инструкциях и справочниках.


 кВт; ; cosφ=0,8;

                                                                                      (4.4)

                                                                     (4.5)

 кВт.

 кВар.


Результаты расчета сведены в таблицу 4.2


Таблица 4.2 – Ведомость электрических нагрузок завода

Наименование отделения

КИ

cosφ

КС

Р,

кВт

РРАСЧ

кВт

QРАСЧ

кВар

1

2

3

4

5

6

7

8

 9

10

Воздушная компрессорня

Насосная №1

Блок водоподготовки

Газовая компрессорная

Насосная №2

Операторная

Блок печей

Реакторный блок

Водоблок

Факельное хозяйство

0,7

0,7

0,65

0,7

0,7

0,6

0,65

0,7

0,6

0,6

0,9

0,8

0,8

0,8

0,8

0,7

0,7

0,8

0,7

0,75

0,75

0,75

0,7

0,75

0,75

0,65

0,7

0,75

0,65

0,7

78,2

783,4

290,7

326

1645

20,5

30

742,6

802,3

150

58,65

587,5

218

260,811110,7

14,3

22,5

556,9

802,3

112,5

32,8

440,7

163,5

83,5

699

10

17

417,6

601,7

63


ИТОГО




4868,7

3744,2

2528,8


4.2.2 Определение расчетных электрических нагрузок на высшем (6кВ) напряжении

В проектируемом предприятии будет 2 потребителя на 6кВ. Расчет производится по коэффициенту использования (КИ).

Воздушная компрессорная (6кВ):


РУСТ=5300 кВт.

КИ=0,8

cosφ =0.9

                                                                             (4.6)

                                                                      (4.7)

                                                             (4.8)

 кВт.

 кВар.

 кВА.


Газовая компрессорная (6кВ):


РУСТ=2500 кВт.

КИ=0,75

cosφ =0.9

                                                                             (4.9)

                                                                      (4.10)

 кВт.

 кВар.

 кВА.

4.3 Определение расчетной нагрузки электрического освещения


В качестве источников электрического света на промышленном предприятии используются газоразрядные лампы и лампы накаливания.


,                                                                 (4.11)


где F – площадь, м2.

Коэффициент спроса для расчета освещения цехов принимаем равным 0,8


                                                              (4.12)


Пример расчета для воздушной компрессорной:


17 кВт; ;  м2.

 кВт.

 КВар.


Для остальных цехов расчет аналогичен. Результаты расчета сведены в таблицу 3.3

А – длина цеха, м.

В – ширина цеха, м.


Таблица 4.3 – Расчетные нагрузки электрического освещения цехов завода

Наименование отделения

F,м2

А,М

В,М

РРАСЧ

кВт

QРАСЧ

кВар

1

2

3

4

5

6

7

8

9

10

Воздушная компрессорня

Насосная №1

Блок водоподготовки

Газовая компрессорная

Насосная №2

Операторная

Блок печей

Реакторный блок

Водоблок

Факельное хозяйство

360

504

918

1404

1980

600

120

1800

642

150

30

42

50

78

66

50

30

45

51

10

12

12

 18,3

 18

 30

 12

 4

 40

 18

15

4,9

6,8

12,5

19,09

26,9

8,16

1,6

24,5

8,8

0,5

1,2

1,7

3,09

 4,7

 6,66

 2,02

 0,4

 6,06

 2,2

0,2


ИТОГО




113,3

28,03

Страницы: 1, 2, 3, 4, 5, 6, 7


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.