![]() |
|
|
Электроснабжение предприятия по производству деталей к автомобилямВыбрав произвольную систему координат, центр электрических нагрузок определяется по формулам: Рис.3.1 Определение центра электрических нагрузок Так как в полученном центре (рис.3.1) размещения ГПП возможно, то подстанция устанавливается в точке, со смешением вдоль оси X в направлении источника питания. 4. Выбор числа и мощности цеховых ТПВыбор числа и мощности цеховых трансформаторных подстанций, также как число трансформаторов на каждой из них, должен производиться в зависимости от величин сменных нагрузок, близости или удалённости цехов друг от друга, необходимой надёжности питания потребителей, перспективы развития производства, удельной плотности нагрузки и загрузки трансформаторов в рабочем режиме, а также производственными, архитектурно-строительными и эксплуатационными требованиями. Должны учитываться конструкция производственных помещений и условия окружающей среды. Однотрансформаторные цеховые подстанции, как правило, применяются при нагрузках, допускающих перегрев питания на время доставки складского резерва, или возможности резервирования питания потребителей по сети вторичного напряжения. Двухтрансформаторные цеховые подстанции применяются при преобладании потребителей 1 и 2 категории, а также при неравномерном суточном или годовом графике нагрузок. Мощность трансформаторов 2-х трансформаторной подстанции выбирается так, чтобы в аварийном режиме, при отключении одного из них, другой мог бы нести всю нагрузку с перегрузкой не более 30%. Мощность трансформатора однотрансформаторной подстанции выбирается такой, чтобы она полностью обеспечивала электроэнергией всех потребителей запитанных от неё. При выборе мощности трансформаторов учитывается, что максимальная мощность трансформаторов, установленных на цеховых ТП, не должна превышать 1600-2500 кВА [4] тех случаях, когда мощность, потребляемая цехом велика, то необходимо устанавливать несколько ТП на цех. При выборе цеховых трансформаторов следует стремиться к меньшей номенклатуре трансформаторов по мощности предприятия в целом. При плотности нагрузки целесообразно принять КТП с трансформаторами мощностью 1000 кВА: при 0,2-0,3 - 1600, более 0,3 приходится рассматривать установку трансформаторов мощностью 250-400 или 630 кВА. Для трансформаторов цеховых ТП следует принимать следующие коэффициенты загрузки: для цехов с преобладающей группой электроприемников первой категории при 2-х трансформаторной КТП: 0,65 - 0,75,для цехов с электроприёмниками преимущественно второй категории, где необходимо предусматривать однотрансформаторные КТП.0,9-0,95, для цехов с преобладанием электроприёмников третьей категории: 0,95 - 1,0 [4]. 4.1 Распределение нагрузок по цеховых ТПДля начального определения мощности трансформаторов КТП, рассчитывается удельная плотность нагрузки где - суммарная расчётная нагрузка цехов присоединённых к одной КТП, F - площадь этих цехов Таблица 4.1. Распределение нагрузок по ЦТП
Далее приводится оптимизация выбора мощности трансформаторов ТП в зависимости о их числа, категории надёжности электроснабжения потребителей и коэффициента загрузки трансформатора потребителей и коэффициента загрузки трансформатора. Составляются варианты с различной мощностью трансформаторов и оптимальным размещением компенсирующих устройств. По категории надёжности ЭП для всех потребителей можно принять однотрансформаторные ТП за исключением ТПЗ и ТП6. Выберем мощности трансформаторов: где n - количество трансформаторов в ТП. Таблица 4.2. Выбор максимальной мощности трансформаторов
Для каждого предприятия, энергосистема устанавливает величину реактивной мощности, которую она передаёт по своим сетям этому заводу в часы максимума нагрузки энергосистемы Qэ, недостающая мощность должна быть скомпенсирована на месте. Определяется реактивная мощность, соответствующая нормированному коэффициенту мощности. Для питания цеховых ТП в системе внутризаводского электроснабжения применяется напряжение 10 кВ. Питание производится кабелями, проложенными в траншеях. Принимаются кабели типа ААШв с бумажной изоляцией, алюминиевой оболочкой и жилами, и шланговым ПХВ покровом. Для данного типа прокладки кабеля: расчетная температура окружающей среды +15°С нормированная температура жилы проводника +60 С. Условия выбора кабеля. В качестве примера, приводится выбор сечения кабеля питающего ТП2 и ТП1. 1. По условию нагрева длительно допустимым током: К2 - поправочный коэффициент на температуру окружающей среды (К2=1) [13. табл.7.32] К1 - поправочный коэффициент на число работающих кабелей, уложенных в одной траншее (К1-1, т.к кабель один), тогда По условию, что Iдоп>Iрn принимается сечение кабеля F=70 с Iдоп=165А 2. По экономической плотности тока: Число часов использования максимума нагрузки: Для данного значения Тм = 3563,4 ч. Jэ = 154 [13. табл.7.27] Fэк=Iр/ Jэк=150/1,4= 107 Принимаем стандартное ближайшее сечение F=120 с Iдоп=240 А. 3. По термической стойкости к токам КЗ сечение определяется по формуле где С - температурный коэффициент, , А - ток короткого на шинах 10кВ ГПП, С = 98 для кабелей с алюминиевыми жилами и бумажной изоляцией. Меньшее стандартное ближайшее сечение 50 с Iдоп = 180 А. 4. По перегрузочной способности: Iдл. доп > Iрмах, где Кпер - коэффициент допустимой перегрузки по отношению к номинальной, определяется по Iнорм/Iдоп 150/240, Кпер=1,25 в течении 6 часов [7. табл.13.1] Кп=1 - так как проложен один кабель. Iдл. доп=.300 А > 195 А Окончательно выбирается кабель ААШв F = 120 с Iдоп=240А. Расчет остальных кабелей аналогичен и сводится в таблицу 4.3 Таблица 4.3. Выбор кабелей питающих ТП
Сопротивление участков сети выполненных кабелями определяем по следующей формуле: , где - удельное сопротивление кабельной линии, Ом/км [4 табл.2.7] Таблица 4.4. Сопротивление участков сети
4.2 Расчёт распределения реактивной мощности по магистралямСопротивление трансформаторов, приведённое к 10 кВ определяется по формуле: где Рк. з. - потери короткого замыкания, кВт [4. табл.13.]. Расчёт проводится для каждой из ТП, исходя из 2-х вариантов мощности трансформаторов (максимальной и минимальной). ; ; Эквивалентное сопротивление всей схемы Таблица 4.5. Сопротивления трансформаторов
Входные реактивные мощности энергосистемы для соответствующих магистралей имеют следующие значения: Распределение реактивной мощности от энергосистемы по трансформаторам отдельных магистралей приводится в таблице 4.6., там же находится значения минимальных мощностей компенсирующих устройств по магистралям. Рассмотрим магистраль М1. Таблица 4.6. Распределение реактивной мощности
Выбор КУ при компенсации на стороне 10 кВ Выбираются следующие компенсационные устройства: 2хУК10,5-1125ЛУЗ+1хУК10,5-900ЛУЗ+1хУК10,5-400ЛУЗ=3550кВар Определение Sтmin при компенсации реактивной мощности на стороне 0,4кВ. Выбор ККУ: Магистраль М1: ; Магистраль М2: Магистраль М3: ; Магистраль М4: Минимальная мощность трансформаторов: , результаты приведены в таблице 4.6. 4.3 Результаты выбора ку и мощности трансформаторовРезультаты выбора КУ и мощности трансформаторов для вариантов компенсации реактивной мощности на стороне 10 и 0,4 кВ сведены в таблице 4.7. Таблица 4.7. Результаты выбора КУ и мощности трансформаторов для дух вариантов
4.4 Расчёт приведённых затрат по вариантамИспользуются следующие соотношения: Страницы: 1, 2, 3, 4, 5, 6, 7, 8 |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |