![]() |
|
|
Особенности химической формы развития материиХимический субстратный синтез включает особый, специфически химический механизм — катализ, т. е. способность ускорения химических превращений. В химической форме материи, таким образом, возникает своеобразная способность многократного самоускорения движения и развития. Химический субстратный синтез — высшая и предельная форма субстратного синтеза в природе. Как способ развития, субстратный синтез связан с относительно простыми субстратами и с определенного уровня сложности становится невозможным. Это объясняется уже тем, что более сложные субстраты обладают большой автономностью и не могут объединяться. Закономерный характер химической эволюцииДетерминанты направленности химической эволюцииНаправленность химической эволюции является прежде всего выражением, всеобщей направленности, определяющей всю бесконечную последовательность основных форм материй, вплоть до человека. Так как химическое возникает на физического и существует на его основе, химическая направленность опирается на исходные для нее физическую направленность и направленность, заложенную в химических элементах. Последние заключает в себе тенденцию к соединению, к прямому субстратному синтезу и в этом смысле направленность развития является «априорной» по отношению к химической эволюции. На каждой ступени химической эволюции направленность развития дооформляется и развивается в ходе субстратных синтезов в этом плане выступает уже как «апостериорная». Что определяет направленность химической эволюции от простого к сложному, к возникновению живого? По этому ключевому вопросу в естественнонаучной и философской литературе существуют две основные точки зрения. Одни ученые (А.И. Опарин, Дж. Бернал, В.И. Кузнецов) считают, что фактором, определяющим развитие химического в сторону живого, является химический отбор, который дает оценку развивающихся химических систем относительно среды. В процессе отбора таких химических систем сохраняются и продолжают эволюционировать все более сложные системы. «Выживаемость» химических систем обусловлена усложняющимся химическим содержанием систем. Согласно второй точке зрения направленность химической эволюции определяется внутренними ограничениями, вытекающими из свойств химических элементов и их соединений. Не среда совершенствует химическое, а химическое совершенствует само себя при сопоставлении со средой (посредством химического отбора наиболее устойчивых систем). Активным фактором отбора оказывается, с этой точки зрения, само химическое, «отбор есть самоотбор «под углом зрения» соответствия среде». Фактически к этой точке зрения подходил и А.И. Опарин, который подчеркивал способность химической материи к саморазвитию. В разработанной А.П. Руденко теории саморазвития открытых каталитических систем объектом химической эволюции рассматривается не молекула, а каталитическая система, включающая взаимодействующие молекулы, катализаторы и химическую среду. Основным показателем развития каталитической системы является абсолютная каталитическая активность, рост которой служит основой эволюционных изменений каталитической системы, ее усложнения, которое происходит с нарастающей вероятностью. Паритетность химических синтезов является относительной, ибо химические элементы неравноценны по своему химическому содержанию и, следовательно, эволюционному потенциалу. Поскольку наиболее богатым химическим элементом является углерод, с ним связано магистральное направление химической эволюции. Атомы углерода образуют так называемую полипептидную связь, последовательность сотен тысяч атомов углерода, к которой могут присоединяться любые другие химические атомы и их группы. Химическая эволюция приводит к появлению такого химического субстрата, который получает все более богатое химическое содержание и становится основой химической эволюции, приобретает автономность и устойчивость. Субстратный синтез теряет при этом свой прежний «паритетный» характер, постепенно исчерпывает себя, а развивающийся химический субстрат становится все более способным к самостоятельной эволюции, к саморазвитию. Важнейшим свойством такого субстрата оказывается самосохранение, которое осуществляется благодаря тому, что химическая диссоциация превращается в средство поддержания синтеза, поддержания целостности автономного субстрата. Когда химический процесс оказывается таким образом «замкнутым на самого себя», т.е. становится средством поддержания целостности материальной системы, химический субстрат превращается в живую материю, а химический процесс становится жизненным процессом. По глубокому замечанию Ф. Энгельса, жизнь — это самосохраняющийся химический процесс. Жизнь, таким образом, является закономерным и необходимым результатом химической эволюции природы. Направленность химической эволюции на живое осуществляется посредством двух основных механизмов: химической изменчивости и химического отбора, которые по мере приближения химического к критическому периоду (скачку) усложняются, накапливают в себе потенциальное биологическое содержание. Изменчивость, как и отбор, не носит чисто случайный характер, а имеет определенные «каналы», направленность, что, разумеется, не исключает случайности в предмутацноннсм процессе. Основные ступени химической эволюции не случайны по отношению к сущности химической формы материи, что их детерминация не сводится лишь к непосредственной, попарной связи друг с другом, а имеет сквозной характер. Одной из основных закономерностей развития является аккумуляция содержания – выражающей сущностную сторону развития. Второй путь дальнейшего решения проблемы детерминации развития связан с исследованием законов развития химической формы материи, поскольку они выступают в качестве наиболее существенных детерминант развития. Периодический закон со своей физической стороны безусловно выступает как закон развития элементов, поскольку ядра атомов возникают в процессе ядерного синтеза и различаются по степени сложности. Но усложнение ядер атомов не является собственно химической эволюцией. В своей общей формулировке периодичеокий закон явно выступает как закон, выражающий лишь общее – периодическую зависимость свойств элементов вообще от их места в системе элементов. Но развернутая интерпретация его с необходимостью включает в своя указание на существование закономерной последовательности различных особенных. Детерминация особенного периодическим законом выражается, во-первых, в том, что этот закон в существенной мере обусловливает качественную неоднородность элементов, связанную о их различной сложностью и, следовательно, с различной ролью в химическом мире и его эволюции. Детерминируя в определенной мере своеобразие углерода как химически наиболее сложного элемента, обладающего наивысшим эволюционным потенциалом, периодический закон в существенной степени детерминирует и общее направление химической эволюции от элементарного уровня до возникновения живой материи. В этом смысле закон периодичности возникает вместе с началом химической эволюции (элементным уровнем химического) и является «априорным» по отношению ко всей последующей эволюции. Поэтому надо заключить, что основные этапы химической эволюции в существенной мере обусловливаются этим законом. Включенность особенного в содержание закона отнюдь не означает, что содержание особенного полностью заключено в нем. Способ включения особенного в закон еще не получил достаточного исследования в философской литературе. Характеризуя его в некотором приближении, можно сказать, что особенное входит в закон частично, выражено в нем в виде тенденции. Поэтому периодический закон содержит в себе только какую-то сторону направленности развития химического. В своем полном виде она выражена в сущности химической формы материи, в ее тенденции к прямым субстратным синтезам. Детерминация развития химической формы материи своей внутренней стороной имеет противоречие между тенденцией к синтезу и тенденцией к диссоциации. Постоянно стремясь к синтезу, преодолевая в процессе его тенденцию к диссоциации, химическое закономерно развивается, поднимаясь с одной ступени на другую. Развитие химической формы материи в этом смысле предстает как процесс развертывания основного противоречия, как последовательность его ступеней или форм. АккумуляцияВ химической эволюции обнаруживается одна из важнейших закономерностей развития — аккумуляция содержания низших ступеней в высших. Химическая эволюция представляет собой не простую смену одного состояния другим, а накопление, синтез основных результатов развития в последующих ступенях, в результате чего возникает материальный субстрат, обладающий наибольшим многообразием самых различных и даже противоположных свойств. Так, белки, один из важнейших компонентов живой материи, обладают кислотными и основными, гидрофильными и гидрофобными свойствами, обнаруживают все основные типы реакций. В нуклеиновых кислотах — втором важнейшем компоненте живой материи — благодаря их особой структуре происходит накопление информационного содержания в сжатой, кодированной форме. Возникновение жизни обусловлено прежде всего магистральным направлением химической эволюции, где химическая форма материи выступает в своем оптимальном, или достаточно полном, содержании или многообразии. Учитывая это обстоятельство, большинство крупнейших химиков мира считают, что жизнь не может возникнуть на какой-либо иной, кроме углеродной, основе, например, на базе кремния или азота, которые обладают несравненно меньшим, чем углерод, многообразием химических связей и, следовательно, меньшим потенциалом развития. «Все данные физико-химических исследований, — пишет А.И. Опарин, — говорят нам о том, что иных форм соединений, ведущих к развитию жизни, не может быть». По мнению В.Г. Фесенкова, «во Вселенной органическая жизнь, если она вообще существует, может быть построена только на основе углеводородных соединений». Аккумуляция содержания сопровождается его универсализапией. В процессе развития содержание не просто накапливается, но приобретает все более общий характер, обогащается общими признаками (чертами). Тенденция к универсальному развитию химического субстрата заложена в элементах-органогенах (способных к созданию молекул с самыми разнообразными функциональными группами, конфигурацией, размерами), широко распространенных во Вселенной. Зрелость и полнота этой тенденции зависят от ступени химической эволюции. На высшей ступени развития химического универсализация выражается в появлении такого субстрата (надмолекулярного комплекса), который может вступать в максимальное многообразие связей и изменяться в соответствии с любыми изменениями среды. Такая сложность и универсальность химического субстрата становятся препятствием к его самостоятельному и устойчивому существованию. Самосохранение его оказывается возможным только в условиях биологической организации. Однако универсальность надмолекулярного комплекса имеет множественный характер, т.е. остается универсальностью множества частей. Живое в отличие от химического обладает общей реактивностью (общей реакцией организма на воздействия внешней среды), являющейся обобщением реакционных способностей химического комплекса. Аккумуляция и детерминация являются двумя взаимообусловленными сторонами развития. Чем богаче, универсальнее химический субстрат, тем сильнее в нем выражено сущностное свойство материи «быть причиной самой себя». Аккумулятивный характер развития, таким образом, необходимо приводит к усилению самодетерминации развития. Диалектика развития химической формы материиВ основу представления о способе развития химической формы материи Энгельсом было положено понятие химической реакции. Однако в последнем химический способ существования определен применительно к отдельным превращениям. Системный подход к совокупному миру, химических, превращений позволяет заключить, что общим интегральным направлением химических превращений является синтез. С химической точки зрения синтез и диссоциация неравноценны в силу самой природы химических элементов, имманентный сущностным свойством которых является способность к образованию связей (реакционная способность). С термодинамической точки зрения синтез также является более вероятным, чем распад, поскольку «интеграция всегда идет в направлении уменьшения общей свободной энергии системы» (Эндельгардт В. А.). Наконец, общий взгляд на химический процесс в целом, идущий от элементов до макромолекулярного комплекса, лежащего в основе живого, дает основания признать, что диссоциация атомов не является равноценной синтезу. Тенденция химического к синтезу является абсолютной, а тенденция к, распаду - относительной. Поскольку диалектика синтеза и распада есть частный случай соотношения противоположностей можно заключить, что синтез и распад диалектически взаимосвязаны, но в тоже время не являются равноценными: синтез включает в себя распад в качестве своего внутреннего момента. Неравноценность синтеза и распада в химическом процессе, дает основания для вывода о том, что сущность химического способа существования и развития состоит в прямом субстратном синтезе, формулой которого служит . Используя традиционную формулу химической реакции синтеза можно выразить также:. В конкретном химическом аспекте процесс эволюции химической материи и возникновение живой материи описан теорией А.И. Опарина, считающейся наиболее вероятной гипотетической теорией происхождения жизни. Согласно этой гипотезе предбиологическая эволюция прошла несколько основных ступеней — органических веществ (начиная с простейших соединений углерода СН, CN, СО) — высокомолекулярных полимеров (прежде всего первичных белков и простейших нуклеиновых кислот) — индивидуальных многомолекулярных систем, в результате направленной эволюции которых возникали первичные примитивные организмы. В процессе химической эволюции обнаруживается глубинная, внутренняя логика развития, которая скрыта под частностями и «деталями» химического процесса и может быть выявлена только совместными усилиями теоретической химии и философской науки. Как уже отмечалось, способом химического существования и развития является прямой субстратный синтез. Его основным внутренним противоречием является противоречие между субстратным синтезом как целостным процессом и включенным в него процессом химической диссоциации, или распада. Диалектический «смысл» субстратного синтеза заключается в том, что химические вещества по отдельности не обладают достаточным для саморазвития содержанием и поэтому химическая эволюция может осуществляться только посредством синтеза этих веществ. Преобладание, или абсолютность, химического синтеза ярко выражено уже на исходном уровне химической эволюции — в химических элементах, основной тенденцией которых является тенденция к синтезу, а не распаду, что предопределено уже физической структурой элементов — стабильностью атомного ядра и способностью электронных оболочек к электромагнитным взаимодействиям. Выражаясь гегелевским языком, химические элементы и их соединения «определены к синтезу». Исходной формой основного противоречия выступает противоречие химического элемента с самим собой. В химическом элементе в его неуничтожимой тенденции к синтезу потенциально заключены все последующие этапы развития химического с их противоречиями. Противоречие химического с самим собой получает новый вид в химических соединениях, усложнение которых приводит к такому моменту, когда устанавливается непрерывное взаимодействие синтеза и диссоциации. Из их сложного взаимодействия, опосредованного отношением химического со средой, рождается основное противоречие живого – противоречие между тенденцией самосохранения и тенденцией приспособления. Биологическая форма материиСущность жизни. Живая материя, как уже отмечалось, возникает в результате закономерного развития химической формы материи, когда последняя «выходит за свои собственные рамки» и становится «сам себя осуществляющим перманентным химическим процессом» (Энгельс). Гегель отмечал, что «если бы продукты химического процесса сами начинали действовать сызнова, то они были бы жизнью. В этом смысле жизнь есть увековеченный химический процесс». Используя разумные соображения Гегеля, Энгельс дал первое в науке определение жизни как способа существования белковых тел. «Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел». Энгельсово определение материи фиксирует субстратную и функциональную стороны живой материи. В соответствии с данными науки XIX в. субстратом жизни Энгельс считал белковые тела, включающие, наряду с белком как главным носителем жизни, жиры, углеводы и другие химические соединения. С функциональной стороны (способ существования живого субстрата) жизнь рассматривалась как процесс самосохранения живого посредством постоянного саморазрушения и обновления химических составных частей субстрата. В середине XX в. определение жизни, сохраняя основное материалистическое содержание — трактовку жизни как способа существования высокоорганизованной материи, претерпело существенные изменения в своей собственно биологической части. Молекулярной генетикой была ракрыта огромная роль в явлениях жизни нуклеиновых кислот — ДНК и РНК, выступающих в качестве важнейшей химической основы наследственности. В связи с этими и рядом других открытий биологии жизнь необходимо определить как способ существования высокоорганизованного материального субстрата, основными химическими компонентами которого выступают белки, нуклеиновые кислоты, углеводы, жиры, некоторые минеральные соединения. Сущностью жизни, или биологического способа существования, является тенденция к самосохранению путем приспособления к среде (адаптации). Замечательная особенность биологической формы материи (БФМ) заключается в том, что если более простые материальные тела — физические и химические существуют в силу присущей им большей или меньшей устойчивости, то у живой материи самосохранение становится результатом активных процессов: на самосохранение направлена вся совокупность физических, химических и собственно биологических процессов живого организма. Это самосохранение возможно только благодаря активному приспособлению живых организмов к окружающей среде. ЗаключениеВ заключение следует сказать несколько слов о роли полученных философских знаний в моей диссертационной работе. Во-первых, как уже отмечалось, углерод обладает наивысшим потенциалом химического развития. Именно поэтому начиная с 30-х годов и до настоящего времени в химии огромный интерес уделяется полимерам – веществам на основе углерода. Полимеры, к которым относятся и белки, основные компоненты живого, представляют высшую, наиболее сложную, а потому и малоизученную ступень развития химической формы материи. Изучение структуры высших ступеней химической материи следует начинать с её простейших небелковых форм, а именно α-полиолефинов, чему и будет посвящена моя диссертационная работа. Во-вторых, представляет интерес изучение общей структуры и свойств смесей полимеров с нанокомпозитными глинами, т. е. системы высших и средних по степени организации представителей химической материи. Такие смеси обладают промежуточным физико-химическим способом взаимодействия компонентов и обладают целым рядом новых свойств, не наблюдающихся у них по отдельности. Данные структуры являются новой ступенью синтеза химической материи, не встречающуюся в природе. Развитие химической формы материи проявляется здесь в осуществлении прямого субстратного синтеза глины и полимерной смеси. В то же время ограниченность взаимодействия как полимеров между собой, так и их с глиной говорит о высокой развитости отдельных субстратов. Так как подобные исследования уже проводились в нашей лаборатории, то можно сказать, что этот синтез носит аккумулятивный характер. Этим исследованиям будет посвящена большая часть моей будущей диссертации. В-третьих, данное развитие не является саморазвитием, а происходит вследствие взаимодействия химических форм с биологической и социальной формами материи, и является, таким образом, частью единого закономерного мирового процесса. Это означает, что будущая диссертация должна соответствовать общемировым научным, этическим, эстетическим, культурным и философским требованиям к своему содержанию. Единый закономерный мировой процесс продолжает развиваться, и ускорение его развития обязано явлению катализа химической формы материи. Биологическая форма материи своим существованием во многом обязана ферментам – природным катализаторам. Их изучение также проводится в нашей лаборатории. Изучаются также и биодеградирующие полимеры – вещества не загрязняющие окружающую среду, имеющие биологическое происхождение. Обобщая вышесказанное, можно сказать, что философское учение продолжает оказывать влияние на развитие конкретных наук, в частности химии, и остается важным инструментом для проведения дальнейших исследований в различных областях естествознания. Список литературы1. Васильева Т.С. Химическая форма материи и закономерный мировой процесс. С. 89. 2. Васильева Т.О., Орлов В.В. Химическая форма материи (химия, жизнь, человек). Пермь, 1983, с. 104. 3. Кедров Б. М. Предмет и взаимосвязь естественных наук. М., 1967. С. 238. 4. Волькенштейн М. В. Биофизика. М., 1981. С. 23. 5. Менделеев Д.И. Основы химии. М.; Л., 1934. Т. 1.С. 255. 6. Кузнецов В.И. Диалектика развития химии. М., 1973. 7. Опарин А.И. Планеты и жизнь// Населенный космос. М., 1972. С. 166. Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |