рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Структурные уровни организации материи: концепции микро-, макро- и мегамиров

Структурные уровни организации материи: концепции микро-, макро- и мегамиров

1.ВВЕДЕНИЕ

 

 

 

 

 Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком ма­териальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы че­ловеческого восприятия и несоизмеримых с объектами повседнев­ного опыта.  Применяя системный подход, естествознание не просто выде­ляет типы материальных систем, а раскрывает их связь и соот­ношение.


   В науке выделяются три уровня строения материи:

·        Макромир мир макрообъектов, размерность которых со­относима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километ­рах, а время — в секундах, минутах, часах, годах.

·                 Микромир — мир предельно малых, непосредственно не на­блюдаемых микрообъектов, пространственная разномерность ко­торых исчисляется от  десяти в минус восьмой степени  до десяти в минус шестнадцатой степени см, а время жизни - от бесконечности до десяти в минус двадцать четвертой степени сек.

·        Мегамир — мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и мил­лиардами лет.


 И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро- и мегамиры теснейшим образом взаи­мосвязаны.





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.МАКРОМИР: концепции классического естествознания.


 В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватываем период oт античности до становления экспериментального естествознания в XVI—XVI1 вв. В этот период учения о природе носили чисто натурфилософский характер, наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

  Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи — атомизм, согласно которому все тела состоят из атомов — мельчайших в мире частиц.

  Античный атомизм был первой теоретической программой объяснения целого как суммы отдельных составляющих его час­тей. Исходными началами в атомизме выступали атомы и пус­тота. Сущность протекания природных процессов объяснилась на основе механического взаимодействия атомов, их притяже­ния и отталкивания. Механическая программа описания при­роды, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.

  Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать исследование нужно с концепций классической физики.

Формирование научных взглядов на строение материи от­носится к XVI в., когда Г. Галилеем была заложена основа пер­вой в истории науки физической картины мира — механиче­ской. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо­логию нового способа описания природы — научно-теорети­ческого. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото­рые становились предметом научного исследования. Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверять их в условиях научного эксперимента. Эта методологическая концепция, впервые сформулированная Галилеем в труде "Пробирные весы", оказала решающее влияние на становление классического естествознания.

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же зако­нами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц — атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо­лютно постоянно и всегда пребывает в покое. Время представ­лялось как величина, не зависящая ни от пространства, ни от материи.

Философское обоснование механическому пониманию при­роды дал Р. Декарт с его концепцией абсолютной дуальности (независимости) мышления и материи, из которой следовало, что мир можно описать совершенно объективно, без учета чело­века-наблюдателя. Это убеждение, глубоко созвучное взглядам Ньютона, на десятилетия вперед определило направленность развития естественных наук.

Итогом ньютоновской картины мира явился образ Все­ленной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий. Отсюда и вера в то, что теоретически можно точно реконструировать любую про­шлую ситуацию во Вселенной или предсказать будущее с аб­солютной определенностью. И.Р.Пригожин назвал эту веру в безграничную предсказуемость "основополагающим мифом классической науки".

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области — оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц — кор­пускул. В корпускулярной теории света И. Ньютона утвер­ждалось, что светящиеся тела излучают мельчайшие части­цы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отра­жения и преломления света.

    Наряду с механической корпускулярной теорией, осуществ­лялись попытки объяснить оптические явления принципиально иным путем, а именно на основе волновой теории, сформули­рованной X.Гюйгенсом. Волновая теория устанавливала анало­гию между распространением света и движением волн на по­верхности воды или звуковых волн в воздухе. В ней предпола­галось наличие упругой среды, заполняющей все пространство, светоносного эфира Распространение света рассматривалось как распространение колебаний эфира, каждая отдельная точка эфира колеблется в вертикальном направлении, а колебания всех точек создают картину волны, которая перемещается в пространстве от одного момента времени к другому. Главным аргументом в пользу своей теории X. Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.

     Согласно же корпускулярной теории, между пучками изу­ченных частиц, каковыми является свет, возникали бы столк­новения или, по крайней мере, какие-либо возмущения. Исхо­дя из волновой теории X. Гюйгенс успешно объяснил отраже­ние и преломление света.

     Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, рас­пространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гра­нью, то его тень будет иметь резкую границу. Однако эго воз­ражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно ви­деть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было на­звано дифракцией света. Именно открытие дифракции сделало X. Гюйгенса ревностным сторонником волновой теории света. Однако авторитет И. Ньютона был настолько высок, что кор­пускулярная теория воспринималась безоговорочно даже не­смотря на то, что на ее основе нельзя было объяснить явление дифракции

    Волновая теория света была вновь выдвинута в первые де­сятилетия XIX в. английским физиком Т. Юнгом и французским естествоиспытателем О.Ж. Френелем. Т.Юнг дал объясне­ние явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помо­щью парадоксального утверждения, свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды среды, или волно­вое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается со впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.

Другой областью физики, где механические модели оказа­лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж.К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по­ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоис­пытатель Х.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М.Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. Ос­мысливая свои эксперименты, он ввел понятие "силовые ли­нии". М.Фарадей, обладавший талантом экспериментатора и богатым воображением, с классической ясностью представ­лял себе действие электрических сил от точки к точке в их "силовом поле". На основе своего представления о силовых ли­ниях он предположил, что существует глубокое родство элек­тричества и света, и хотел построить и экспериментально обос­новать новую оптику, в которой свет рассматривался бы как колебания силового поля. Эта мысль была необычайно смела для того времени, но она была достойна исследователя, кото­рый считал, что только тот находит великое, кто исследует ма­ловероятное.

Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую пунктом исследований Дж.К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Используя высоко­развитые математические методы, Максвелл "перевел" модель силовых линий Фарадея в математическую формулу. Понятие "поле сил" первоначально складывалось как вспомогательное математическое понятие. Дж.К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность. "Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, нахо­дящиеся в электрическом или магнитном состоянии"1. Обоб­щив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера, Био-Савара) и открытое М. Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему диффе­ренциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики.

    Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не "привязанного" к электрическим зарядам. В дифференциальных уравнениях Мак­свелла вихри электрического и магнитного полей определяются производными по времени не от своих, а от чужих полей: элек­трическое — от магнитного и, наоборот, магнитное — от элек­трического. Поэтому если меняется со временем магнитное по­ле, то существует и переменное электрическое поле, которое в свою очередь ведет к изменению магнитного поля. В результате происходит постоянное изменение векторов напряженности электрического и магнитного полей, т.е. возникает переменное электромагнитное поле, которое уже не привязано к заряду, а отрывается от него, самостоятельно существуя и распространя­ясь в пространстве. Вычисленная им скорость распространения электромагнитного поля оказалась равна скорости света. А ис­ходя из этого Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж.К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцом в 1888 г.

      В экспериментах Г. Герца в результате искровых разрядов между двумя заряженными шарами появлялись электромагнит­ные волны. Когда они падали на круговой проволочный виток, то создавали в нем токи, о появлении которых свидетельство­вали искры, проскакивающие через разрыв. Г. Герц успешно провел отражение этих волн и их интерференцию, т.е. те явле­ния, которые характерны для световых волн, а затем измерил длину Максвелла.

    После экспериментов Г. Герца в физике окончательно электромагнитных волн. Зная частоту колебаний, он смог подсчитать скорость распространения электромагнитных волн, которая оказалась равна скорости света. Это прямо под­твердило гипотезу ут­вердилось понятие поля не в качестве вспомогательной матема­тической конструкции, а как объективно существующей физи­ческой реальности. Был открыт качественно новый, своеобразный  вид  материи.


    Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

 • Вещество и поле различаются как корпускулярные и волновые сущности: вещество дискретно и состоит из атомов, а поле непрерывно.

• Вещество и поле различаются по своим физическим ха­рактеристикам: частицы вещества обладают массой по­коя, а поле — нет.

• Вещество и поле различаются по степени проницаемо­сти: вещество мало проницаемо, а поле, наоборот, пол­ностью проницаемо.

• Скорость распространения поля равна скорости спета, а скорость движения частиц вещества меньше ее на много порядков.

В результате революционных открытий в физике в конце прошлого и начале нынешнего столетий обнаружилось, что физи­ческая реальность едина и нет пропасти между веществом и по­лем: поле, подобно веществу, обладает корпускулярными свой­ствами, а частицы вещества, подобно полю, — волновыми.





.
















































3.МИКРОМИР: концепции  современной  физики.

 

 

1)Фундаментальные открытия в области физики                                        конца 19-начала 20 вв.

 

 


В конце XIX — начале XX вв. физика вышла на уровень исследования микромира, для описания которого кон­цептуальные построения  классической  физики  оказались непригодными.

В результате научных открытий были опровергнуты пред­ставления об атомах как о последних неделимых структурных элементах материи.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Дж. Томсоном электрона — отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположе­ние о наличии помимо электрона и положительно заряженной частицы. Опыты английского физика Э. Резерфорда с альфа-частицами привели его к выводу о том, что в атомах существу­ют ядра — положительно заряженные микрочастицы, размер которых (10~12 см) очень мал  по  сравнению  с размерами атомов (10~8 см), но в которых почти полностью сосредоточена масса атомов.

Кроме того, было обнаружено, что атомы одних элементов могут превращаться в атомы    других в результате  радиоактивно­сти, впервые открытой французским физиком А. А. Беккерелем Явление радиоактивности, окончательно опровергнувшее пред­ставление о неделимости и непревращаемости атома, заключа­ется в самопроизвольном превращении неустойчивых ядер ато­мов радиоактивных элементов  в  результате  ядерных излучений.

Вопросы радиоактивности различных элементов изучались французскими физиками Пьером и Марией Кюри. Ими были открыты новые элементы — полоний и радий, а также установ­лено, что в результате радиоактивного излучения атом радиоак­тивного элемента превращается в атом другого  элемента  Открытие сложной структуры атома стало крупнейшим со­бытием в физике, поскольку оказались опровергнутыми пред­ставления классической физики об атомах как твердых и неде­лимых структурных единицах вещества.




2)Рождение  и  развитие  представлений о квантах.

 

      При   переходе   к   исследованию   микромира   оказались разрушенными и представления классической физики о веществе и поле как двух качественно своеобразных видах материи. Изучая микрочастицы, ученые столкнулись с парадок­сальной, с точки зрения классической науки, ситуацией, одни и те же объекты обнаруживали как волновые, так и корпуску­лярные свойства.        

Первый шаг в этом направлении был сделан немецким физи­ком М. Плавком. В процессе работы по исследова­нию теплового излучения, которую М. Планк назвал самой тя­желой в своей жизни, он пришел к ошеломляющему выводу о том, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях — квантахСумма энергий этих мельчайших порций энергии — квантов определяется через число колебаний соответствующего вида излучения и универ­сальную естественную константу, которую М. Планк ввел в науку под символом h. E = Ну, ставшим впоследствии знамени­тым (где hyквант энергии, у — частота).

       Если введение кванта еще не создало настоящей квантовой теории, как неоднократно подчеркивал М Планк, то все же 14 декабря 1900 г., в день опубликования формулы, был зало­жен ее фундамент. Поэтому в истории физики этот день считается днем рождения квантовой теории. А поскольку понятие элемен­тарного кванта действия служило в дальнейшем основой для понимания всех свойств атомной оболочки и атомного ядра, то 14 декабря 1900 г. следует рассматривать  как  день  рождения  всей  атомной  физики  и  начало  новой  эры  естествознания.

  Первым физиком, который восторженно принял открытие элементарного кванта действия и творчески развил его был А. Эйнштейн. В 1905 г. он перенес гениальную идею квантованного поглощения и отдачи энергии при тепловом излучении на излуче­ние вообще и таким образом обосновал новое учение о свете. А. Эйнштейн предположил, что речь идет о естественной закономерности всеобщего характера. Не оглядываясь на гос­подствующие в оптике взгляды, он применил гипотезу Планка к свету и пришел к выводу, что следует признать корпускуляр­ную структуру света.

Квантовая теория света, или фотонная теория А.Эйнштейна, утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление. И вместе с тем свето­вая энергия, чтобы быть физически действенной, концентриру­ется лишь в определенных местах, поэтому свет имеет прерыв­ную структуру.

Эйнштейновское представление о световых квантах помогло понять и наглядно представить явление фотоэлектрического эффекта, суть которого заключается в выбивании электронов из вещества под действием электромагнитных волн. Экспери­менты показали, что наличие или отсутствие фотоэффекта оп­ределяется не интенсивностью падающей волны, а ее частотой. Если предположить, что каждый электрон вырывается одним фотоном, то становится ясно следующее: эффект возникает лишь в том случае, если энергия фотона, а следовательно, и его частота достаточно велика для преодоления сил связи электро­на с веществом.

Правильность такого толкования фотоэлектрического эф­фекта (за эту работу Эйнштейн в 1922 г. получил Нобелевскую премию по физике) через 10 лет получила подтверждение в экспериментах американского физика Р.Э. Милликена. Откры­тое в 1923 г. американским физиком А.Х. Комптоном явление (эффект Комптона), которое отмечается при воздействии очень жесткими рентгеновскими лучами на атомы со свободными электронами, вновь и уже окончательно подтвердило кванто­вую теорию света.

Возникла парадоксальная ситуация: обнаружилось, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его вол­новые свойства, а при фотоэффекте — корпускулярные. При этом фотон оказался корпускулой совершенно особого рода. Основная характеристика его дискретности — присущая ему порция энергии — вычислялась через чисто волновую характе­ристику — частоту у (Е= Ну).

Как и все великие естественно-научные открытия, новое уче­ние о свете имело фундаментальное теоретико-познавательное значение. Старое положение о непрерывности природных про­цессов, которое было основательно поколеблено М. Планком, Эйнштейн "отбросил" в гораздо более обширной области фи­зических явлений.

Представление о квантах электромагнитного поля — фото­нах — один из наиболее фундаментальных вкладов в разработку квантовой теории. Уже поэтому А. Эйнштейн должен рас­сматриваться как один из величайших ее создателей. Теория А. Эйнштейна, развивающая взгляды М. Планка, позволила Н. Бору разработать модель атома.




 

3)Теория атома Н.Бора.

 

 

    В1913 г. великий датский физик Н. Бор применил прин­цип   квантования   при   решении   вопроса   о   строении атома и характеристике атомных спектров, устранив тем самым противоречия,   которые   возникали   при  планетарной модели атома Э. Резерфорда. Модель атома, предложенная Резерфордом в 1911 г., напоминала солнечную систему: в центре находится атомное ядро, а вокруг него но своим орбитам движутся электроны. Ядро имеет положительный заряд, а электроны — отрицательный. Вместо сил тяготения, действующего в Сол­нечной системе, в атоме действуют электрические силы. Элек­трический заряд ядра атома, численно равный порядковому номе­ру в периодической системе Менделеева, уравновешивается суммой зарядов электронов — атом электрически нейтрален.

     Неразрешимое противоречие этой модели заключалось в том, что электроны, чтобы не потерять устойчивость, должны двигаться вокруг ядра. В то же время они, согласно законам электродинамики, обязательно должны излучать электромаг­нитную энергию. Но в таком случае электроны очень быстро потеряли бы всю свою энергию и упали на ядро.

Страницы: 1, 2


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.