рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Философия информации и сложных систем

В заключение кратко остановимся на взаимосвязи и взаимозависимости систем и составляющих их элементов. Здесь обнаруживаются следующие диалектические закономерности [Б5].

1.     Относительная самостоятельность структуры, независимость ее от элементов. При удалении из системы одного или нескольких элементов структура может остаться неизменной, а система может сохранить свою качественную определенность (в частности, работоспособность). Удаленные элементы в некоторых случаях могут быть без ущерба заменены новыми, инокачественными. В этом проявляется преобладание внутренних структурных связей над внешними.

2.     Зависимость структуры от элементов. Структура не существует как независимое от элементов организующее начало, а сама определяется составляющими ее элементами. Совокупность элементов не может сочетаться произвольным образом, следовательно, способ связи элементов (структура будущей системы) частично определяется свойствами элементов, взятых для ее построения. Например, структура молекулы определяется (частично) тем, из каких атомов она состоит.

3.     Относительная самостоятельность элементов, независимость их от структуры. Вхождение элемента в структуру более высокого уровня мало сказывается на его внутренней структуре. Ядро атома не изменяется, если атом войдет в состав молекулы, а микросхеме «все равно», в составе какого устройства она функционирует.

4.     Зависимость элементов от структуры. Элемент может выполнять присущие ему функции только в составе системы, только в координации с соседними элементами. В некоторых случаях даже сколько-нибудь длительное сохранение элементо своей качественной определенности невозможно за пределами системы. Рука, отрезанная от тела, есть рука только по названию (пример В. И. Ленина).

Информация в кибернетических системах

Все материальные системы можно рассматривать как преобразователи информации, работающие со своими собственными кодами. Именно такой подход был развит в работах Н. М. Амосова ([А1], [А11], [Б2]). Так, на атомном уровне код состоит из элементарных частиц, на молекулярном — из атомов, главным кодом социального уровня является речь. В связи с этим Н. М. Амосовым ставится проблема взаимоотношения высших и низших кодов. Большая белковая молекула может получать информацию, передаваемую низшими кодами — элементарными частицами и отдельными атомами. Но высший код для нее — молекулярный. Если на нее подействовать, скажем, словом, то она «не поймет», так как ее качество, ее структура не в состоянии воспринимать этот слишком высокий код.

В сложной системе Н. М. Амосов выделяет этажную структуру обработки информации. На каждом этаже функционирует своего рода транслятор, воспринимающий код низшего этажа и вырабатывающий код более высокий. При продвижении вверх информация убывает количественно (так как на каждом этаже происходит абстрагирование, отсечение множества несущественных деталей, присутствующих в низшем коде), но переходит в более высокое качество. Например, код молекул слишком низок для человека. Воздействие отдельной молекулы не может нами непосредственно восприниматься. Зато согласованное квазипериодическое движение множества молекул воздуха, проходя несколько этажей обработки, воспринимается нами как звук, затем — как слово, а на верхнем этаже переходит в понятие. Абстрагирование в этом случае заключается, например, в том, что при выделении слова из звука для нас несущественным становится тембр голоса говорящего, а при переходе к понятиям мы отвлекаемся от отдельных слов.

Высший код может быть разложен на знаки низшего кода, так как каждый знак высшего кода является результатом соединения определенным образом в пространстве или во времени некоторого числа низших знаков. Но заменить высший код низшим нельзя, так как переход от низшего кода к высшему есть качественный скачок.

Остановимся на характеристике процессов регулирования и управления в кибернетических системах (как живых, так и технических). Общей чертой всех кибернетических систем является то, что на протяжении всего периода существования они защищают сами себя от внешних возмущений ([А10], [А11], [Б19]). К этой защитной функции может быть так или иначе сведен обширный спектр более частных функций. Покажем, что основу и сущность данной функции составляют информационно-отражательные процессы.

Под возмущением понимают воздействие на систему, стремящееся перевести ее из одного состояния в другое. Возмущения могут быть как внешними, так и внутренними, связанными с нарушением функционирования какого-либо органа внутри системы. Поскольку состояние системы характеризуется информационным содержанием (= разнообразием), то действие возмущения есть изменение разнообразия системы. Очевидно, не всякое изменение состояния системы совместимо с ее существованием. Так, при воздействии системы «кошка» на систему «мышь» последняя уничтожается (теряет свое прежнее качество). Таким образом, существование системы возможно лишь в определенном диапазоне изменения ее состояний.

Если под воздействием определенных возмущений система остается в пределах допустимых состояний (сохраняет свою качественную определенность), говорят, что она устойчива по отношению к данному типу возмущений. Устойчивость системы может быть достигнута двумя путями: во-первых, если на пути разнообразия возмущений ставится пассивная преграда, во-вторых, если возможна активная защита от него.

Первый способ защиты применяется, в основном, сравнительно примитивными животными. Примерами могут служить всевозможные раковины и панцири. Однако основным способом сохранения устойчивости кибернетических систем является активная защита, состоящая в том, что между источником возмущений и системой ставится регулятор. Основная функция регулятора — в ответ на разнообразие возмущений вырабатывать контрразнообразие компенсирующих действий.

Процессы, происходящие во всех типах регуляторов, подчиняются фундаментальному закону, называемому законом необходимого разнообразия (У. Росс Эшби). Суть его состоит в следующем. Для того чтобы ответная реакция регулятора была адекватна возмущению, необходимо, чтобы регулятор сначала воспринял, отразил возмущение, вычленил существенную информацию о нем. А это означает, что информационная емкость (= разнообразие состояний) регулятора должно быть не меньше, чем разнообразие возмущений.

В процессе эволюции живых существ преимущество получили не «панцири», а «мозги». Совершенствование технических устройств также шло по линии от пассивной к активной защите. Наиболее общим механизмом активной защиты является управление по принципу обратной связи. Возмущения — это, по большей части, непредсказуемые, случайные процессы. Система, как правило, «узнает» о возмущении лишь после того, как подвергнется его действию и окажется переведенной в другое состояние, отличное от запланированного. Различие между заданным и действительным состоянием (между целью и результатом) оказывается сигналом для приведения в действие регулятора. Цель регулирования заключается в том, чтобы уменьшать данное различие (отрицательная обратная связь).


Рассмотрим обобщенную схему системы с обратной связью (см. рис.) [Б14]. Стрелками показаны направления передачи информации. Система получает информацию о внешнем мире (M) и обрабатывает ее, после чего воздействует на внешний мир, передает ему часть информации (N). Известно, что только такая структура позволяет хранить и накапливать информацию. В ряде случаев количество информации, заключенной в системе, будет увеличиваться не непосредственно в результате внешнего воздействия на систему, а в результате взаимодействия потоков информации внутри самой системы. А именно, проходящий сквозь систему поток M–A–B–N взаимодействует с внутренним потоком B–C–D–A таким образом, что общее количество информации увеличивается.

Информация, циркулирющая по замкнутому контуру A–B–C–D–A, называется к связанной информацией, и может считаться частью структуры системы. Это устойчивые знания системы о внешнем мире, те знания, которые постоянно нужны для поддержания функционирования системы. Именно накопление связанной информации противостоит естественному процессу возрастания энтропии и обусловливает прогрессивное развитие системы, т.е. закономерное усложнение ее структуры, повышение уровня организации. Как видно из схемы, связанная информация может накапливаться в результате переработки свободной информации, т.е. той информации, которой система обменивается с внешним миром (M–A–B–N).

Системы, способные обмениваться информацией с внешним миром, подобно показанной на рис., называются открытыми. Системы можно классифицировать по их способности к взаимодействию и способности использовать информацию. (см. табл.)


Открытые системы

Системы, способные воспринимать, хранить, терять, накапливать и использовать свободную и связанную информацию

Информационные системы

Системы, способные передавать свободную информацию и терять связанную информацию

Неинформационные системы

Закрытые системы

Системы, способные лишь терять связанную информацию


Управление в ибернетических системах можно разделить на три типа: самосохранение, саморазвитие и самовоспроизведение [А11]. Эти типы управления связаны с различными классами разнообразия и с различными видами генетического тождества.

В случае самосохранения конечная цель управления заключается в сохранении целостности, качественной определенности системы. Примером может служить относительная неизменность любого организма в его зрелом возрасте, нормальное функционирование кибернетических устройств, работающих по принципу обратной связи. Характерная черта этого типа управления — сохранение информационного содрежания структуры кибернетической системы и постоянство цели управления. При самосохранении кибернетическая система остается тождественной самой себе в структурном отношении. Назовем этот тип тождества генетическим тождеством первого рода.

Саморазвитие — более сложный тип управления. С точки зрения самосохранения необязательно совершенствование, прогресс системы. Саморазвитие же предполагает накопление структурной информации, а значит и изменение структуры. Система, саморазвиваясь, уже может изменять свой тип целостности, качественной определенности, оставаясь в то же время сама собой. Этот, более высокий тип тождества можно назвать генетическим тождеством второго рода. Примером саморазвивающихся систем могут быть эмбрионы, молодые, не достигшие зрелости организмы, а также самообучающиеся кибернетические устройства.

Еще более сложный тип управления — самовоспроизведение. Он свойствен живым организмам и обществу (экономике, науке, культуре и т. д.). Имеются и первые искусственные самовоспроизводящиеся системы — компьютерные вирусы, относящиеся не к классу устройств, а к чисто информационным образованиям. Общим для всех процессов самовоспроизводства является то, что при сохранении или даже увеличении информационного содержания одной системы ею прождается другая система, как правило, способная к саморазвитию. Иными словами, информация от первой системы не отбирается, а дублируется, причем частично. Потомок создается не как законченная и точная копия предка, а как «заготовка», наследующая лишь главные особенности структуры и способная самостоятельно накапливать информацию. Предок и потомок — это две различные системы, занимающие различные области в пространстве и существующие в различные промежутки времени. Поэтому то тождество, которое существует между ними (генетическое тождество третьего рода), имеет еще более высокий тип.

Общий вывод из приведенного рассмотрения состоит в том, что управление всегда связано или с сохранением, или с увеличением структурной информации системы. Впрочем, этот вывод нельзя абсолютизировать и считать, что если система имеет управление по принципу обратной связи, то ее информационное содержание не может уменьшаться. Дело в том, что управление в системе осуществляется лишь в отношении определенных возмущений, а другие возмущения не устраняются. В случае действия непредусмотренного возмущения, от которого система не может защититься, ее информационное содержание может снижаться. Таким образом, управление связано с сохранением или повышением количества информации лишь в определенном отношении и в определенных пределах.

Отражение и информация в кибернетических устройствах имеют ряд черт, присущих отражению и информации в неживой природе [А6]. Это связано с тем, что субстратом отражательных процессов, элементами кибернетических устройств являются неживые объекты, функционирующие по закоам физики. Однако организация этих устройств принципиально отличается от организации систем неживой природы, ибо они воплощают замысел человека.

В неживой природе информационные процессы не выделены из энергетических. Любая неживая система участвует в информационном процессе «целиком», всей своей структурой. У нее нет специального органа, отдела, который бы отвечал за информацию. В отличие от этого, кибернетические системы обладают такой структурой, благодаря которой они способны выделить информационое содержание из несущего его потока вещества или энергии.

Специфической чертой отражения в кибернетических устройствах является то, что при помощи свойства отражения, присущего неживым объектам моделируются информационно-отражательные процессы, присущие живой природе и даже обществу. Процессы отражения в неживой материи при создании кибернетических устройств организуются и упорядочиваются таким образом, чтобы сопутствующие им информационные процессы были изоморфны (в общем случае гомоморфны) информационным процессам, протекающим в биологических и социальных системах. Материальные носители низших форм отражения несут информационную нагрузку, свойственную высшим формам отражения. Эта особенность отличает отражение в кибернетических устройствах от прочих форм отражения и позволяет говорить об особой кибернетической форме отражения [А10].

Информация в теоретико-игровых моделях

К новому пониманию информационных процессов можно прийти, если в качестве источника возмущений, действующих на кибернетическую систему, рассмотреть другую кибернетическую систему [А10]. Иными словами, рассматриваются две системы, находящиеся в состоянии конфликта. В цели каждой из двух систем входит помешать другой системе в достижении ее целей и оградить себя от помех со стороны соперника. Математическая теория, изучающая подобные процессы, называется теорией игр. Многие ситуации, возникающие в жизни общества и в технике, допускают теоретико-игровую формализацию.

Примем частное определение информации как снятой неопределенности. Большая часть игр так или иначе связана с неопределенностью. Рассмотрим различные виды игровой неопределенности и соответствующие им виды информации.

В играх, известных под общим названием азартных, основной вид неопределенности — это статистическая неопределенность. Игрок не знает заранее, как ляжет карта, или какая цифра выпадет при бросании кости. Однако важной чертой статистической неопределенности является то, что априори известны вероятности всех возможных исходов. Чисто азартные игры (кости, орлянка, рулетка) — это игры исключительно статистические, других типов неопределенности они не содержат. Вся статистическая неопределенность полностью устраняется при очередном ходе. Итак, статистическая неопределенность связана с объективно случайным характером процессов, используемых в игре.

Другой тип неопределенности характерен для так называемых игр с полной информацией (шашки, шахматы, рэндзю, решение головоломок типа кубика Рубика). В любой момент игрок обладает полной информацией о текущем положении дел. С формально-математической точки зрения, принципиально возможно перебором всех возможных вариантов и прослеживанием всех возможных последствий выбрать оптимальный ход. Однако число возможных ходов и их последствий настолько огромно, что на практике этого невозможно сделать. Неопределенность этого типа называется комбинаторной.

Статистическую, комбинаторную и некоторые другие типы неопределенности объединяет то, что неопределенность связана исключительно с самой по себе игровой ситуацией (раскладом карт, расположением цветов на гранях куба), то есть с синтаксическим аспектом информации о состоянии игры. Синтаксическая неопределенность может быть связана как с ходом противника (я не знаю, что выпадет на рулетке), так и с собственным ходом (я не знаю, на какое число поставить).

Неопределенность более высокого типа связана с тем, что игрок, пусть даже обладая полной информацией на синтаксическом уровне, не может до конца выяснить ее смысл. Неопределенность этого типа называется семантической. Неопытный шахматист, играя с гроссмейстером, не сразу поймет, что последовательность ходов противника вместе составляет единый маневр. Возможна также семантическая неопределенность своего хода (я не знаю, какой маневр предпринять) и семантическая неопределенность в отношении действий противника.

Семантическая неопределенность всегда существует в такой игровой ситуации, как научное познание (игра с природой). Такие постоянно развивающиеся формы, как понятия, категории, теории включают на семантическом уровне наряду с определенностью также некоторую неопределенность. Семантической неопределенностью обладают совокупности экспериментальных данных (неизвестно, какой закон за ними кроется).

Если синтаксическая неопределенность связана только со структурой множества возможных ходов (своих или противника), то семантическая неопределенность связана еще и с особенностями отражения этого множества в системе (сознании игрока). В случае статистической неопределенности при незнании конкретного исхода следующего хода все же известно распределение вероятностей, а в случае семантической неопределенности неизвестны даже вероятности.

Наиболее сложный вид неопределенности в игре — это стратегическая неопределенность. Игрок не знает, какого образа действий придерживается противник, какие цели перед собой ставит. Неопределенность этого типа обычно несвойственна играм (в обычном смысле этого слова): цель игры четко определена правилами, но присуща различным сферам человеческой деятельности (бизнес, политика и т. д.). Информация, снимающая стратегическую неопределенность — это стратегическая информация.

Частным случаем стратегической неопределенности является неопределенность прагматическая, состоящая в незнании (вернее, в неполном знании) игроком собственных целей. Прагматическая неопределенность связана с неадекватностью и неполнотой самоотражения субъекта, с неполной информацией о себе и о своем месте в игровой ситуации.

Между видами неопределенности и соответствующими видами информации обнаруживаются отношения взаимной подчиненности. Пока я не знаю, чего хочу сам, для меня бесполезна информация о стратегии других людей. Только когда мои цели определены, эта информация становится мне нужна — для выработки собственной стратегии. Лишь после того как продумана стратегия, можно планировать тактику — определять смысл (семантику) более мелких этапов. И лишь после этого можно переходить к уровню синтаксиса — планировать и совершать отдельные поступки.

При сборе сведений о противнике информация проходит лестницу уровней в обратном направлении. Естественно, что противник никогда сам не раскроет свою тактику (семантику) и тем более стратегию (прагматику). В лучшем случае я могу надеяться получить синтаксическую информацию — какие конкретные действия предпринимает противник, какими сообщениями обменивается по каналам связи (хотя и синтаксическая информация обычно засекречивается). Информацию высших уровней можно получить лишь путем анализа, переработки и обобщения непосредственно получаемой информации о действиях противника.

Связь информации с законами и категориями диалектики

Законы диалектики и информация

Диалектика, как известно, представляет собой всеобщую теорию развития. Поэтому действие основных законов диалектики проявляется, главным образом, при анализе информационных процессов (а не информации в одномоментном срезе). Рассмотрим по очереди три основных закона диалектики в приложении к движению информации ([А6], [А11], [Б1], [Б3]).

Закон единства и борьбы противоположностей. Причину всякого информационного процесса, как и всякого вообще процесса, составляет взаимодействие двух противоположных начал. Так управление по принципу обратной связи основано на различии, несовпадении «желаемого» и «действительного» состояний системы и направлено на устранение разрыва между ними. В процессе обмена информацией между системой и внешней средой, как правило, имеет место противодействие системы негативным влияниям среды. Внутренняя противоречивость процессов управления заключается еще и в том, что самовоспроизводящиеся и самосовершенствующиеся системы в процессе функционирования, оставаясь в одном отношении тождественными самим себе (хотя бы генетическое тождество сохраняется всегда), в другом отношении могут претерпевать существенные изменения, вплоть до изменения своей качественной определенности.

Противоречивую роль информационных процессов раскрывает закон необходимого разнообразия Эшби. Хотя информация сама по себе связана с разнообразием, различием, ее использование в сложных самоуправляемых системах направлено на сохранения тождества. Только постоянно изменяясь под воздействием окружающей среды, только отражая ее изменения, система может остаться собой, сохранить свое качество.

Рассмотрим следующую ситуацию. Пусть мы пытаемся узнать что-либо об определенном объекте. Наши начальные представления о нем характеризуются полной неопределенностью. Это означает, что разнообразие возможных (с нашей точки зрения) предположений относительно данного объекта максимально. Всякий раз, когда мы узнаем об объекте что-то новое, круг допустимых предположений сужается, то есть, уменьшается разнообразие гипотез. В этом отношении получение информации есть ограниячение разнообразия (что равносильно рассматриваемому в статистической теории устранению неопределенности). В другом отношении получение информации сопряжено с нарастанием разнообразия. А именно, возрастает разнообразие тех достоверных фактов, которые нам известны и тех следствий, которые могут быть нами из них получены, иными словами, возрастает сложность имеющейся у нас картины мира.

Прогрессивное развитие всегда связано с ограничением разнообразия. Из множества возможных сценариев эволюции на практике реализуется только один. Из сотен тысяч органических молекул в живые организмы входят лишь сотни, из сотен аминокислот — лишь 20 и т. д. Но этот процесс сопровождается увеличением сложности, внутреннего разнообразия прогрессирующих систем, в частности, усложнением поведения (= увеличение разнообразия реакций) живых существ. Итак, любой процесс движения информации связан с уничтожением, ограничением одного вида разнообразия и одновременным увеличением другого его вида.

Закон перехода количественных изменений в качественные. В процессе эволюции любой системы происходит накопление заключенной в ней информации. На первых этапах приспособления к новым условиям внешней среды информация о среде накапливается в виде свободной информации. Это чисто количественный рост «знаний» системы о внешнем мире, не приводящий к изменению ее качественной определенности. При достижении определенного порога (при превышении меры) свободная информация переходит в связанную, то есть происходит закрепление полученных знаний в структуре системы. Отныне те или иные особенности среды отражены в системе «жестко» и являются неотъемлемой частью ее самой. Любая перестройка структуры есть, очевидно, качественное изменение.

Количественным накоплением информации сопровождался естественный процесс эволюции материи. Например, можно утверждать, что если информационное содержание объекта составляет несколько десятков бит относительно молекулярного уровня, то это наверняка объект неживой природы. Если же в объекте содержится порядка  бит на том же уровне, то это, скорее всего, живой объект.

Страницы: 1, 2, 3, 4, 5


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.