рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Дипломная работа: Использование мультимедийных средств при изучении основных свойств движений в курсе планиметрии основной школы

Таким образом пространственное мышление — психическое образование, сложное по своей структуре и функциям. Уровень развития пространственного мышления зависит от гармонического соотношения различных элементов этой структуры. Неравномерность их развития определяет индивидуальные различия в структуре пространственного мышления.

Эксперименты, проведенные в ряде школ Москвы (1999 - 2000 г.), показали, что учащиеся 8-9 классов дифференцируются по 3 типам довольно ярко. Одни учащиеся не справляются в достаточной мере даже с заданием первого типа («преобразования, приводящие к изменению пространственного положения образа»). Другие хорошо справившись с первым заданий, затрудняются в выполнении второго типа («преобразования, изменяющие структуру образа «); третьи успешно выполняют первое и второе, но «застревают» на третьем задании («длительное и неоднократное выполнение преобразований первых двух типов») и, наконец, четвертые — выполняют задания всех трех типов. Результаты выполнения всех типов заданий помогали оценить уровень развития пространственного мышления школьников. При этом учитывалась не только общая продуктивность выполнения заданий, но и определенные — количественные и качественные — критерии процесса их выполнения. [2] Данные различия зависят не только от уровня подготовки учащихся, но и от его индивидуальных математических способностей.

1.3 Типовые различия в характеристиках компонентов математических способностей

Существование различных типов математических складов ума есть следствие не только индивидуальных и типовых психологических различий между людьми, но и следствие различных требований, которые предъявляют человеку разные разделы математики. Эксперименты на ребятах от 11 до 14 лет показали, что в зависимости от соотношения словесно-логических и наглядно-образных компонентов формируются различные структуры математических способностей, различные математические склады ума, обеспечивающие различными путями успешное выполнение математической деятельности.

Это позволило выделить аналитический тип (аналитический или абстрактно-математический склад ума), геометрический тип (геометрический или образно-математический склад ума) и две модификации гармонического типа (абстрактная и образная модификации гармонического склада ума). Первые два типа должны быть признаны несколько ограниченными, и выражается это в том, что они особенно благоприятны для работы лишь в определенных областях математики. Добиваясь высоких успехов в овладении школьной математикой, представители этих типов тем не менее испытывают некоторые специфические трудности, о которых речь будет идти ниже.

Стоит сразу отметить что при этом, у всех способных к математике школьников хорошо развит словесно-логический компонент, и, речь может идти только о большем или меньшем развитии наглядно-образного компонента. Соответственно можно говорить о преобладании наглядно-образного компонента над словесно-логическим лишь в относительном смысле...

Дадим более подробное описание каждому типу:

a)  Аналитический тип

Мышление представителей этого типа характеризуется явным преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлеченными схемами, у них нет потребности в наглядных опорах, в использовании предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости «наталкивают» на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализом геометрической схемы или чертежа.

Пространственные представления у представителей аналитического типа развиты слабо (особенно представления в трех измерениях).

b)  Геометрический тип

Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим условно можно говорить о преобладании его над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактно математических отношений и зависимостей и демонстрируют большую изобретательность в этом отношении: в этом смысле, условно говоря, образность часто заменяет им логичность. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлеченными схемами. Они упорно пытаются оперировать наглядными схемами, образами и представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднено.

Представители геометрического типа отличаются очень хорошим развитием пространственных представлений.

c)  Гармонический тип

К этому типу относится значительное большинство способных школьников. Для этого типа характерно относительное равновесие хорошо развитых словесно-логического и наглядно-образного компонентов при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они весьма изобретательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся четко осознают, что содержание обобщения не исчерпывается частными случаями. Успешно осуществляют они и аналитический и образно-геометрический подход к решению многих задач.

Многие способные ученики (отнесенные к гармоническому типу) демонстрируют и аналитический, и геометрический подход к решению.

Гармонический тип наблюдается в двух модификациях. В основном их различие сводится к следующему. При равновесии хорошо развитых словесно-логического и наглядно-образного компонентов модификацию «А» отличает тяготение к мыслительным операциям без применения наглядно-образных средств, модификацию «Б» — тяготение к мыслительным операциям с применением наглядно-образных схем. Представители и того и другого подтипов одинаково хорошо могут изображать математические отношения и зависимости наглядно-образными средствами, но первые не испытывают в этом потребности, не стремятся делать это, вторые же, наоборот, испытывают в этом потребность и чаще опираются при решении на графические схемы. Первым такая опора мало помогает, вторым — облегчает решение. При необходимости первые могут прибегнуть к помощи наглядных образов, а вторые — решить задачу без опоры на наглядно-образные модели. При анализе математического материала первые предпочитают отталкиваться от вербально-логических формулировок, вторые — от наглядно-образных моментов. [1]

Из выше рассмотренного и сравнительной таблицы (Приложение 1: Схематическая характеристика математических типов (складов ума)) можно сделать заключение о том, что у большинства групп (три из четырех) развит наглядно-образный компонент, благодаря которому усиливается эффективность различных наглядных пособий при введении нового материала.

1.4 Психологические особенности использования ТСО

Технические средства обучения уже довольно давно вошли в наши образовательные учреждения и в течение второй половины XX в. получили широкое распространение.

Технические средства обучения повышают продуктивность учебно-воспитательного процесса только в том случае, если учитель, воспитатель хорошо себе представляют и понимают психологические основы их применения.

Наглядность, если подразумевать под ней все возможные варианты воздействия на органы чувств обучаемого, обоснована еще Я. А. Коменским, назвавшим ее «золотым правилом дидактики» и требовавшим, чтобы все, что только можно, представлялось для восприятия чувствами. Современные ТСО (под ТСО в современной методической литературе понимают не только технические средства, но и программые средтва) имеют для воплощения этого правила, широкие возможности, которые необходимо реализовывать на основе учета психологических особенностей восприятия информации в процессе обучения.

Из психологии известно, органы зрения «пропускают» в мозг почти, в 5 раз больше информации, чем органы слуха, и почти в 13 больше, чем тактильные органы. Информация, воспринятая зрительно, по данным психологических исследований, более осмысленна, и не требует значительного перекодирования, она запечатлевается в памяти человека легко, быстро и прочно.

Однако в процессе обучения основным источником информации продолжает оставаться речь учителя, воздействующая на слуховые анализаторы. Следовательно, учителю надо расширять арсенал зрительных и зрительно-слуховых средств подачи информации. Наиболее высокое качество усвоения достигается при непосредственном сочетании слова учителя и предъявляемого учащимся изображения в процессе обучения. А ТСО как раз и позволяют более полно использовать возможности зрительных и слуховых анализаторов обучаемых. Это оказывает влияние прежде всего на начальный этап процесса усвоения знаний — ощущения и восприятия. Сигналы, воспринимаемые через органы чувств, подвергаются логической обработке, попадают в сферу абстрактного мышления. В итоге чувственные образы включаются в суждения и умозаключения. Значит, более полное использование зрительных и слуховых анализаторов создает в этом случае основу для успешного протекания следующего этапа процесса познания — осмысления. Кроме того, при протекании процесса осмысления применение наглядности (в частности, изобразительной и словесной) оказывает влияние на формирование и усвоение понятий, доказательность и обоснованность суждений и умозаключений, установление причинно-следственных связей и т.д. Объясняется это тем, что аудиовизуальные пособия влияют на создание условий, необходимых для процесса мышления, лежащего в основе осмысливания.

Большую роль ТСО играют в запоминании как логическом завершении процесса усвоения. Они способствуют закреплению полученных знаний, создавая яркие опорные моменты, помогают запечатлеть логическую нить материала, систематизировать изученный материал.

Значительна роль ТСО и на этапе применения знаний: уже много раз говорилось, что существуют специальные тренажеры, компьютерные программы, направленные на выработку умений и навыков, специальное использование для этих целей статических и звуковых средств.

Особенно должно учитываться эмоциональное воздействие технических средств. Если важно сконцентрировать внимание учащихся на содержании предлагаемого материала, то сила их эмоционального воздействия вызывает интерес и положительный эмоциональный настрой на восприятие. Избыток эмоциональности затруднит усвоение и осмысление основного материала. Если используемый материал должен вызвать определенные чувства и переживания (на уроках чтения и литературы, истории, на воспитательных занятиях и др.), решающим оказывается именно эмоциональный потенциал используемого средства. Цвет, умеренное музыкальное сопровождение, четкий и продуманный дикторский или учительский комментарий значимы при восприятии любых ТСО и НИТО. Это не исключает использования только наглядной или только звуковой передачи информации в зависимости от задач урока, содержания материала, возраста, имеющегося у детей опыта и т.п.

Три из четырех названных Ушинским средств присущи ТСО и НИТО, которые, обладая широким диапазоном выразительных, художественных и технических возможностей, позволяют легко усилить впечатление от излагаемого материала. Обычно человек воспринимает окружающую действительность в удобном для него порядке, на экране же управление вниманием осуществляется выделением главного изображения средствами динамики и композиции кадра, монтажной сменой планов. Из кадра убирают или ослабляют все отвлекающее от главного разными способами: соотношением главного объекта и окружающих фоновых объектов, различной интенсивностью окраски, выделением светом и т.п. Но основным приемом остаются выбор и смена планов. Так, наблюдающий за объектом взор разлагает его на части, потом снова собирает, переносит на другой объект, сближает и сопоставляет оба объекта. Информация в кадре разумно дозируется: весь фрагмент воспринимается целиком.

Непроизвольное внимание учеников вызывают новизна, необычность, динамичность объекта, контрастность изображения, т.е. те качества информации, которые воспроизводятся с помощью ТСО. При создании кинофильма, диафильма, телепередачи, компьютерной программы стремятся не только доходчиво, но и занимательно построить эпизод, придать неожиданность монтажу, композиции кадра, добиваются наибольшей выразительности крупных планов, одновременного воздействия голоса диктора, слов действующих персонажей и музыки. Все это, вместе взятое, воздействует на зрителя и, вызывая непроизвольное внимание учащихся, способствует непроизвольному запоминанию материала.

Распределение внимания — одновременное внимание к нескольким объектам и одновременное полное их восприятие. У детей оно как раз не очень развито, поэтому часто в подготовке экранных пособий используют принцип «фон и фигура», когда изучаемый объект выделяется крупнее всего, что изображено на экране, чтобы усилить внимание именно к нему, так как на общем фоне ученик теряет многие его необходимые характеристики. Переключение внимания — перемещение внимания с одного объекта на другой. Технические средства позволяют давать информацию в нужной последовательности и в нужных пропорциях, акцентируя внимание на тех частях объекта, которые в данный момент являются предметом обсуждения. Такое организованное управление вниманием школьников способствует формированию у них важнейшего общеучебного умения — умения наблюдать.

ТСО помогают развивать у учащихся умение сравнивать, анализировать, делать выводы, так как можно в различных формах наглядности дать разные ракурсы изучаемых объектов, довести до логического конца неправильные рассуждения ученика, что является чрезвычайно убедительным, но не всегда достигается словом учителя.

Частота использования ТСО влияет на эффективность процесса обучения. Если ТСО используется очень редко, то каждое его применение превращается в чрезвычайное событие и возбуждает эмоции, мешающие восприятию и усвоению учебного материала. Наоборот, слишком частое использование ТСО приводит к потере у учащихся интереса к нему, а иногда и к активной форме протеста. Оптимальная частота применения ТСО в учебном процессе зависит от возраста учащихся, учебного предмета и необходимости их использования. Для физико-математических предметов экспериментально была определена частота использования ТСО 1:8 (при обучении учащихся 15—16 лет).

Эффективность применения ТСО зависит также от этапа урока. Использование ТСО не должно длиться на уроке подряд более 20 минут: учащиеся устают, перестают понимать, не могут осмыслить новую информацию. Использование ТСО в начале урока (на пять минут) сокращает подготовительный период с трех до 0,5 минуты, а усталость и потеря внимания наступает на 5—10 минут позже обычного. Использование ТСО в интервалам между 15-й и 20-й минутами и между 30-й и 35-й минутами позволяет поддерживать устойчивое внимание учащихся практически в течение всего урока. Эти положения обусловлены тем, что в течение каждого урока у учащихся периодически изменяются характеристики зрительного и слухового восприятия (острота, пороги, чувствительность), внимание, утомляемость. При монотонном использовании одного средства изучения нового материала у учащихся уже к 30-й минуте возникает запредельное торможение, почти полностью исключающее восприятие информации. [5;6;8]

Таким образом ТСО является эффективным средсвом при изучении тем для большинства учащихся, у которых развит наглядно-образный компонент.

1.5 Использование технологии Flash

Информационные технологии стремительно развиваются с каждым годом. В настоящее время производители выпускают множество различных программ для создания интерактивных презентаций, но на данный момент лидером можно считать компанию Adobe, которой принадлежит программное обеспечение Macromedia Flash. С помощью данной программы возможно создание как обычных презентаций (как в Microsoft Office PowerPoint), до интерактивных презентаций и обучающих игр. Многие компании выпускают учебные программы, подготовленные при помощи данного программного продукта (например, компания 1С, Физикон и др.). Так же отличительной особенностью данной программы является, то создаваемое с ее помощью приложения не требуют на компьютере установленного ПО Macromedia Flash. Так же в Macromedia Flash применяется векторная графика и анимация основана только на ключевых кадрах и математическом описании движения с одного ключевого кадра на другой, то все презентации занимают на жестком диске мало места. Благодаря этому можно реализовать дистанционное обучение с помощью сети-интернет, загружая на сайт(ы) работы, сделанные при помощи технологии flash.

Используя flash учитель может создавать как обычные статические презентации, так и интерактивные презентации, электронные учебники, лабораторные работы, обучающие игры…, которые в свою очередь позволяют более продуктивно проводить занятия.

При помощи технологии Macromedia Flash автором созданы работы по изучению темы «Движение», а выбор данной темы был обусловлен тем, что у учеников есть необходимость в визуализации материала и его динамическом представлении, что невозможно реализовать с помощью обычного учебника.

Вывод к главе. Не смотря на различия как в пространственном мышлении так и в различных складов ума, применение ТСО позволяет поднять изложения материала на более высокий уровень, поскольку большей части учеников требуется опора на наглядные пособия. Применение ТСО (а именно flash) позволяет более наглядно показать процессы движения на плоскости (и в пространстве), что способствует более быстрому усвоению основного материала и развитию наглядно-образных представлений у учеников.


2. Обзор учебников

2.1. Учебник Болтянского В.Г., Глейзера Г.Д. «Геометрия 7 - 9»

Глава 3. Центральная симметрия.

Изучение темы движения начинается с параграфа 10 («Равенство фигур».). В параграфе 10 ученики впервые сталкиваются с методом геометрических преобразований. Для более легкого усвоения самого понятия «геометрическое преобразование» и что бы подчеркнуть межпредметные связи авторы учебника приводят аналогию с функциями

Самое понятие движения вводится как геометрические преобразования, при которых сохраняются расстояния между соответствующими точками.

В параграфе рассматривается лишь предложение о том, что при движении пересечение фигур переходит в пересечение их образов. Это предложение представляет собой теорему, т. е. оно может быть доказано. Доказательство не приводится, а смысл этого предложения раскрывается учащимся с помощью рисунка 127 в учебном пособии.

Далее вводится определение равенства фигур через понятие движение: две фигуры называются равными, если существует движение, отображающее одну из них на другую (рис. 126).

Затем формулируется утверждение: так как при движении длины сохраняются, то равные отрезки имеют равную длину. Справедливо и обратное утверждение: если два отрезка имеют равную длину, то они равны, т. е. существует движение, отображающее один из них на другой.

В параграфе 11 («Поворот и центральная симметрия») вводится один из видов движений – поворот c примерами рисунков для наглядного представления данного вида движения.

Далее рассматриваются задачи с решениями. После решения задачи 1 упоминаются «характерные точки» фигуры. В случае отрезка такими характерными точками являются его концы. Для ломанной (или многоугольника) - вершины. Далее рассматривается способ нахождения образа окружности.

Глава 5. Осевая симметрия

В параграфе 16 («Построение симметричных фигур») при изложении материала о движениях нарушено логическое изложение материала: определение движения даётся лишь описательное, и доказательство того, что рассматриваемое преобразование является движением (т. е. сохраняет расстояния), не приводится. Несколько лучше описывается параллельный перенос. Поворот и осевая симметрия вводятся лишь описательно. В частности, поворот определяется как движение плоскости, при котором только одна точка остаётся неподвижной, т. е. переходит в себя. Однако не доказывается почему такое движение существует, а только приводится наглядный рисунок. Рассмотрение данного рисунка заменяет для учащихся доказательство существования.

По аналогии рассматривается и осевая симметрия, которая определена как такое движение плоскости, при котором все точки некоторой прямой остаются неподвижными, а любая точка не принадлежащая данной прямой переходит в другую точку, лежащую по другую сторону этой прямой на равном расстоянии.

Как и в предыдущих параграфах, говорится о том, что для построения образа фигуры надо выделить в ней характерные точки и построить их образы.

В параграфе 17 («Ось симметрии двух точек») материал дается традиционный. Материал о четырёхугольниках специального вида (прямоугольник, ромб, квадрат) рассредоточен по разным параграфам учебного пособия. В данном параграфе рассматривается ромб.

В 18 параграфе («Свойства равнобедренного треугольника») упор сделан на симметричность равнобедренного треугольника; это систематизирует факты и упрощает доказательства. Так же в этой главе присутствует параграф 19, в котором вводится понятие расстояния от точки до прямой.

Композиция геометрических преобразований

Содержание этого параграфа нетрадиционно: прежде этот материал в школе не рассматривался.

Подчеркивается, что композиция движений является некоммутативной операцией. Это поясняется примером, однако некоторых случаях композиция движений обладает свойством коммутативности.

Далее в параграфе рассматривается три задачи. Они дают образцы нахождения композиции различных движений: рассматриваются два возможных случая нахождения композиции осевых симметрии, и композиция поворота и параллельного переноса. В рассмотренных задачах композиция симметрии, поворотов и переносов снова была движением одного из этих видов. Однако приводится пример композиции которая не является ни поворотом, ни параллельным переносом, ни осевой симметрией (эта композиция называется скользящей симметрией и является движением, меняющим ориентацию).

Далее вводится теорема о меняющем ориентацию движении.

В этом параграфе рассматривается лишь случай композиции движений. Можно также рассматривать композиции и других геометрических преобразований. В следующем параграфе рассматривается композиция гомотетии и движения.

В параграфе 37 («Основное свойство подобия. Признак подобия треугольников.») содержание теоретического текста параграфа не сложно. Цель данного параграфа познакомить ученика с основным свойством подобия. И это свойство подобия в этом параграфе используют для доказательства одного из признаков подобия треугольников.

Следующий параграф («Применение подобия к решению задач.») является продолжением предыдущего. В этом параграфе рассматриваются две основные задачи на доказательство, при решении которых используется подобие.

В заключительном параграфе данной главы («Отношение периметров, отношение площадей подобных треугольников».)

Вводятся 2 теоремы об отношениях периметров (площадей) подобных треугольников. Теоремы эти традиционны, их доказательства несложны.

 

2.2 Учебник И.Ф. Шарыгина «Геометрия 7 - 9»

Знакомство с понятием «движение на плоскости» и свойствами движения происходит в конце 9 класса, начиная с параграфа 12.1. Весь материал направлем прежде всего на учеников в развитым наглядно-образным компонентом.

12.1. Движение плоскости

В данном параграфе вводится понятие движения. Движением называется такое преобразование плоскости, которое не меняет расстояние между парами точек, то есть если точки А и В в результате движения переходят в точки A` и B`, то AB = A`B`. Далее идет изложение и доказательство основного свойства движения «Результатом двух последовательных движений плоскости является движение плоскости». После чего даются с доказательством две основные теоремы о движении плоскости:

Страницы: 1, 2, 3


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.