рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Курсовая работа: Механизм поворота руки промышленного робота (модуль М4)

2.2 Расчет волновой передачи

При конструировании модуля поворота руки робота необходимо выдержать ряд требований:

1.  Большое передаточное отношение при сравнительно небольшом количестве деталей.

2.  Высокая нагрузочная способность зацепления.

3.  Сравнительно высокий КПД (=0,92).

4.  Высокая кинематическая точность и плавность хода.

Эти требования привели к необходимости использования волновой передачи как основного механизма обеспечения требуемых показателей.

Исходные данные:

 - крутящий момент на тихоходном валу;

 - число оборотов вала генератора;

-передаточное отношение редуктора;

-время работы редуктора;

возможная перегрузка по Мт в 2.5 раза.

Расчет волновой зубчатой передачи выполняется в 2 этапа: первый - проектировочный, второй - проверочный.

Проектировочный расчет заключается в предварительном определении размеров гибкого колеса: диаметра, длины, ширины, толщины стенок, ширины зубчатого венца.

При проектировочном расчете удобно исходить из критерия износостойкости боковых поверхностей зубьев в связи с тем, что удельное давление на зубья зависит от основных конструктивных параметров гибкого колеса.

Проверочный расчет сводится к проверке удовлетворения волновой передачи критериям работоспособности.

На первом месте по значению стоит критерий прочности. По этому критерию должны проверяться все волновые передачи. Остальные критерии должны учитываться в зависимости от условий работы ВЗП.

Проектировочный расчет

Кинематическая схема передачи соответствует схеме, показанной на рис.1

Рис.1

Принимаем ; . Число зубьев гибкого колеса . Число зубьев жесткого колеса . Назначаем тип генератора - кулачковый с одним рядом шариков. Для гибкого колеса выбираем сталь 20Х2Н4А с HRC 28…32, для жесткого - сталь 40Х с HRC 28…32. Назначаем конструктивные относительные параметры гибкого колеса:  - относительная толщина стенки под зубчатым венцом;  - относительная толщина гладкой оболочки;  - относительная ширина зубчатого венца; -относительная длина гибкого колеса.  Определяем допускаемое удельное давление на поверхности зубьев:

где  - коэффициент, учитывающий влияние передаточного отношения;

 при i>=100 т.к. в данном случае.

 - коэффициент, учитывающий тип генератора волн, для кулачкового генератора он равен единице;

 - допускаемое базовое удельное давление.

Определяем диаметр делительной окружности гибкого колеса:

где  - коэффициент, учитывающий неравномерность распределения нагрузки по зубьям;  - коэффициент многопарности зацепления.

Определяем приближенное значение модуля зацепления:

;

принимаем ближайшее стандартное значение .

Определяем диаметры делительных окружностей гибкого и жесткого колес:

.

Принимаем в соответствии с рекомендациями .

Определяем коэффициент смещения гибкого и жесткого колес:

;

.

Определяем максимально возможную высоту захода зубьев:

Определяем диаметры окружностей впадин и вершин гибкого колеса:

;

.

Окончательное значение диаметра окружности вершин принимается после проверок:

·  Высота зуба не должна быть больше, чем у производящего исходного контура:  подставляем 2,622<3,272 - выполняется;

·  Высота зуба не должна быть больше толщины оболочки гибкого колеса под зубчатым венцом :  подставляем значения и получим 1,311<1,368 - выполняется.

Определяем диаметры окружностей вершин и впадин жесткого колеса:

мм.

,

где  - диаметр окружности выступов.

Определяем наличие радиального зазора между вершинами зуба гибкого колеса и впадиной жесткого колеса по большой оси генератора:

 

подставляем значения и получаем 16,621>0.075 - условие выполняется.

Определяем основные окружности гибкого и жесткого колес:

;

.

Определяем толщины зубьев гибкого и жесткого колес по делительным окружностям:

мм.

. мм.

Определяем размеры по роликам:

,

,

где D - диаметр мерительного ролика, берется в пределах (1,7.2) *m из набора для измерения резьбы: 0.572, 0.796, 1.008, 1.157, 1.302 и т.д. или по ГОСТ 2475-62;  - угол давления в точке касания ролика с профилем зуба, находиться по таблице инволют.

Определяем конструктивные размеры гибкого и жесткого колес:

a)  Гибкое колесо:

 - толщина стенки;

 - толщина гибкой оболочки;

 - ширина зубчатого венца гибкого колеса;

 - длина гибкого колеса;

b)  Жесткое колесо:

 - ширина зубчатого венца жесткого колеса;

 - толщина обода жесткого колеса;

-средний радиус жесткого колеса.

Проверочный расчет

Проверка по критерию прочности

Определяем амплитудные нормальные (изгибные) напряжения в гибком колесе ненагруженной ВЗП:

,

где  - коэффициент, величина которого зависит от формы деформирования;

;

 - коэффициент влияния зубьев; Е - модуль упругости.

Определим амплитудные нормальные напряжения в гибком колесе при действии крутящего момента:

,

где  - коэффициент, учитывающий влияние конструкции генератора волн на интенсивность увеличения напряжений в гибком колесе.

Определяем средние напряжения:

.

Определяем максимальные касательные напряжения в гибком колесе ненагруженной волновой передачи:

.

Определяем максимальные касательные напряжения в гибком колесе нагруженной волновой передачи:

,

где  - коэффициент, учитывающий влияние крутящего момента и конструктивных параметров гибкого колеса на уровень касательных напряжений в нем.

Определяем амплитудные и средние касательные напряжения:

;

.

Определяем эффективные коэффициенты концентрации напряжений:

;

,

где  - коэффициент, учитывающий влияние радиуса сопряжения контура зуба с линией его впадины.

Определяем запас прочности гибкого колеса:

;

;

.

Условие n>1.3 выполняется.

Проверка по критерию "ресурс подшипника генератора волн".

Определяем основные геометрические и конструктивные параметры кулачкового генератора волн:

·   - наружный диаметр круглого подшипника с гибкими кольцами;

·   - толщина наружного кольца;

·   - толщина внутреннего кольца;

·   - диаметр шариков;

·   - ширина колец генератора;

·   - глубина дорожки качения наружного кольца;

·   - глубина дорожки качения внутреннего кольца;

·   - число шариков;

·   - радиус желоба дорожки качения.

Определяем максимальную деформацию по генератору:

.

Определяем располагаемую динамическую грузоподъемность шарикоподшипника генератора:

.

Определяем потребную динамическую грузоподъемность:

Проверка по критерию жесткость звеньев.

Определяем предельный крутящий момент, передаваемый волновым зубчатым редуктором:

,

где  - коэффициент податливости гибкого колеса; G - модуль упругости при сдвиге;  - коэффициент податливости жесткого колеса;  - податливость генератора.

Принимаем радиальное биение вала .

Определяем максимальный крутящий момент:

,

где  - коэффициент перегрузки.

Проверка по критерию "теплостойкость".

Определяем количество тепла, образующегося в результате потерь мощности:

.

Определяем количество тепла, отводимого в окружающую среду от передачи:

,

где  - коэффициент передачи с площади F1; F1 определяется после эскизного проектирования.

Так как А1>А, то условие выполняется.


3. Конструирование механизма

Механизм в данном проект можно оставлять стандартным (протоколом М4), но учитывая особенности расчётов. Конструкция механизма поворота руки робота показана на формате А1 в приложении к курсовой работе.

Конструкция выполняется по расчетам, но выбирается по конструктивным соображениям и стандартами с явным запасом прочности. Это облегчает задачу проектирования механизма, но этот проект даёт только навыки к проектированию. На самом деле при более серьезной проектировке надо рассчитывать каждый элемент механизма и, по возможности, выбирать таковой согласно стандартом.


4. Расчёт на прочность валов

Расчёту подлежат те валы, которые в данном механизме воспринимают нагрузки. Определим потребный диаметр вала на ведущем шкиве учитывая прочностные характеристики. Это является проектировочным расчётом.

где Т - крутящий момент на валу, [tкр] - допускаемое напряжения при кручении.

Так как расчётная величина является очень малой конструктивно для удобства и возможности шпоночного соединения выбираем вал с d = 18 мм., при этом выигрывая большой запас прочности и такой же диаметр имеет вал электрического двигателя, а это упрощает задачу конструирования. Определим потребный диаметр вала на ведомом шкиве учитывая прочностные характеристики. Это является проектировочным расчетом.

Принимаем диаметр вала d=15 мм, это нам даст большой запас прочности и облегчит задачу проектирования.

Принимаем диаметр вала d=45 мм, это нам даст большой запас прочности и облегчит задачу проектирования.

Проверочный расчет

Материал вала - сталь 45, нормализация, σв=590Нмм2.

предел выносливости при симметричном цикле изгиба:

Н/мм2

предел выносливости при симметричном цикле касательных напряжений:

Н/мм2.

Сечение А-А.

Концентрацию напряжений вызывает наличие шпоночной канавки.

Принимаем κτ=1.58, кσ=1б49, масштабный фактор εσ=ετ=0.82, ψτ=0.1;

Крутящий момент М=210·103Нм.

Изгибающий момент в горизонтальной плоскости:

 

Изгибающий момент в вертикальной плоскости:

 

Суммарный изгибающий момент в сечении А-А.

 

Нмм

Момент сопротивления изгибу:

 

Момент сопротивления кручению:


Амплитуда нормальных напряжений изгиба:

 

 среднее значение σm=0;

Коэффициент запаса прочности по нормальным напряжениям:

 

;

Коэффициент запаса прочности по касательным напряжениям

Результирующий коэффициент запаса прочности для сечения А-А

 


5. Расчёт подшипников

По динамической грузоподъемности подбирают подшипники качения при п=> 10 мин. - Ä1 Подшипник подбирается по условию: Сп<=Ср, где Сп - потребная динамическая грузоподъемность, Ср - располагаемая динамическая грузоподъемность.

Динамическую грузоподъемность определяют по формуле:

где а1 = 0.44, а23=1 - коэффициенты, учитывающие качество материалов подшипника, смазку и условия эксплуатации:

промышленный робот модуль

Эквивалентную нагрузку F для различных типов подшипников определяют по формуле:

в частности для радиальных.

F=VÄFaÄKdÄKT

V = 1 (вращается внутреннее кольцо); KdÄ = 1 (спокойная нагрузка);

KT = 1 (температурный коэффициент).

Fr = 31.62Н

FВ = (FrÄ50) /700= 2.26Н

FА= Fr+FВ => FА = 34Н

F = 1Ä34Ä1Ä1 = 34Н

Находим

Выбираем стандартный подшипник

№1000905

Внутренний диаметр d = 20мм;

Внешний диаметр D = 37мм;

Ширина В = 9мм;

Радиус округления r = 0,5мм;

Грузоподъемность С = 574Н;

Статическая грузоподъемность С = 375Н;

Шарики DT = 5мм;

Число шариков Z = 12шт;

Масса 0.042кг.


6. Расчет болтов крепления двигателя к корпусу

Tкр = Tдв.

Мтр > Tдв.

Мтр = кÄTдв

Мтр =FзатÄfÄZÄD/2

К - коэффициент запаса;

Tдв - крутящий момент двигателя;

f = 0.15…0.2 коэффициент трения в стыке деталей

Z - количество болтов соединения

Определим диаметр болтов из условия прочности на срез:

Материал болта: Ст.3

sв = 380 МПа

sТ = 220 МПа

s-1 = 130 МПа

Определим допускаемое напряжения

[sр] =0.3ÄsТ=0.3Ä220=66МПа

Выбираем болт М10 относительно габаритов двигателя.


7. Проверочный расчет шпонки

Призматическую шпонку, применяемую в проектируемом механизме, проверяют на смятие.

Проверка шпонки производится из условия прочности.

Где а) Ft = 445.2H - окружная сила на валы

б) Асм = (0.94h-t1) lр - площадь смятия мм2

Здесь lр - рабочая длина шпонки скругленными торцами

l, h, b, t1 - стандартные размеры шпонки.

l = 15 мм, h = 6 мм, b = 6 мм, t1 = 4,4 мм, lр =64,4 мм,

Асм = (0.94Ä6-4,4) Ä64,4 = 79,86 мм2.

Проверка на прочность:

Проверка шпонки из условия прочности соответствует значению sсм<= [s] см.


8. Смазывание подшипников и передач

Смазка подшипников качения предназначена для уменьшения потерь мощности на трения, демпфирование нагрузки, снижения риска износа и коррозии контактирующих поверхностях, уменьшения шума и лучшего отвода теплоты, заполнения зазоров в уплотнениях, обеспечивая этим герметичность подшипникового узла. Применяют жидкие (минеральные масла и др.) и пластичные (солидолы, консталины и др.) смазочные материалы.

На практике стремятся смазывать подшипники тем маслом, которым смазывают детали передач. При внутренней смазки колёс подшипники качения смазывают брызгами масла. При окружной скорости колёс u= 1 м/с брызгами масла покрывают все детали передачи и внутренние поверхности стенок корпуса. Стекающее с колес, с валов и со стенок корпуса масло попадает в подшипники.

Минимальный уровень масляной ванной ограничивают центром нижнего тела качения подшипников. В ряде случаев для обеспечения надежного смазывания зацепления шестерню или червяк и подшипник быстроходного вала погружают в масло. В этом случае избегание попадания продуктов износа передачи зубчатых колес, червяков и др., а также излишнего пожива маслом подшипники защищаются маслозащитными кольцами и мембраной. Особенно если на быстроходном валу установлены косозубые или шевронные колёса либо червяк, т.е. когда зубья колес или витки червяка гонят масло на подшипник и заливают его, вызывая разогрев последнего.

Добавления жидкого масла производят не реже одного раза в месяц, а через каждые 3…6 месяцев полностью заменяют.

Пластичные смазные материалы применяют при окружной скорости колёс u= 1 м/с для смазывания опор машин, работающих в среде, содержащей вредные смеси и примеси, и там, где необходима работа машин (в химической, пищевой и текстильной промышленности).

Учитывая все вышесказанное для нашего механизма мы выбираем такую смазку как ”Солидол С”.

ГОСТ 4366-64

Предельная прочность на сдвиг, г/см2.

20Å - 2-6

50  2-4

Вязкость при tÅ

0Å <= 2000

20Å <=400-1000

водостойкость - хорошая

tÅ применяемая - 30Å - 70Å


Вывод

При выполнении данного курсового проекта мы приобрели навыки в проектировании и конструировании механизмов и деталей машин, а также навыки в использовании справочной литературой.

Рассчитывались волновая и зубчатая ременная передачи. Все параметры были рассчитаны и подобраны в соответствии с ГОСТами, что несомненно облегчит сборку данного модуля на производстве и обеспечит качественную его работу.

Такая схема модуля поворота руки робота применяется часто. Зубчатая ременная передача в совокупности с волновой передачей позволяет обеспечить высокую точность позиционирования, тихоходность и сравнительно небольшие потери мощности.

При более глубоком подходе к проектированию механизма нужно пересмотреть корпусные детали, направляющие и соединительные элементы и детали.


Список использованной литературы

1. Проектирование механизмов роботов: учебное пособие, В.И. Назин

2. Справочник конструктора-машиностроителя том2 В.И. Анурев.

3. Детали машин.Д.Н. Решетов.

4. Детали машин. Курсовое проектирование М.Н. Иванов В.Н. Иванов.

5. Инженерные расчеты подшипников и валов: учебное пособие, В.И. Назин.

6. Волновые зубчатые передачи: учебное пособие, А.И. Полетучий.

7. Расчет и проектирование волновых передач: учебное пособие. Харьков 1973.


Страницы: 1, 2


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.