![]() |
|
|
Дипломная работа: Друга фаза композитів на основі міді, що виготовлені методом осадження у вакууміВ моїй роботі отримані такі значення коефіцієнтів: К1 = 0,84; К2 = 0,6; що свідчить про достатній рівень даної роботи. 5.16 Мережні методи планування і керування При плануванні і проведенні науково-дослідних робіт доцільно використовувати мережні методи планування [21]. Планування припускає побудову мережної моделі – комплексу взаємозалежних робіт, що визначає послідовність і терміни виконання окремих робіт для того, щоб весь комплекс робіт був виконаний з мінімальними витратами. Етапи планування мережної моделі містить у собі наступні операції: 1) виявлення й опис усіх робіт, необхідних для виконання дипломної роботи; 2) установлення взаємозв’язку і послідовності виконання робіт; 3) індексація робіт; 4) визначення тривалості кожної роботи. Отримані дані, що є вхідними параметрами мережного графіка, наведені у табл. 5.12. Мережний графік, побудований на основі вхідних характеристик мовою робіт, наведений на рис. 5.1 5.17 Мережне планування. Розрахунок параметрів мережного графіку До розрахункових параметрів мережного графіка відносяться: 1) тривалість критичного шляху; 2) ранній початок j-тої роботи; 3) раннє закінчення j-тої роботи; 4) пізній початок j-тої роботи; 5) пізнє закінчення j-тої роботи; 6) повний резерв мережного графіка; 7) вільний резерв робіт. Критичний шлях Ткр. дорівнює сумі робіт з максимальною тривалістю від початку науково-дослідної роботи до її закінчення. Ткр = 121 дн. Ранній початок j-тої роботи визначається за формулою (5.25):
де і – індекс попередньої роботи; j – індекс наступної роботи; Ріп – ранній початок попередньої роботи; dі – тривалість попередньої роботи. Раннє закінчення j-тої роботи визначається за формулою (5.26):
Пізній початок j-тої роботи визначається за формулою (5.27):
де Ткр – тривалість критичного шляху; Рjз – раннє закінчення j-тої роботи у зворотному порядку, для його визначення використовують регресивний графік. Пізнє закінчення j-тої роботи визначається за формулою (5.28):
Повний резерв мережного графіку – це резерви часу робіт, що не лежать на критичному шляху і отже, мають раннє і пізніше початок. Повний резерв j-тої роботи визначається за формулою (5.29):
Вільний резерв мережного графіку – це резерв часу робіт, що можуть бути закінчені за раннім терміном, а наступна за ним робота може бути почата за раннім терміном. Вільний резерв j-тої роботи визначається за формулою (5.30):
Результати розрахунку параметрів мережного графіку зведені в табл. 5.12. 6. Охорона праці і навколишнього середовища 6.1 Загальні питання охорони праці і навколишнього середовища Розглядаючи питання охорони праці, треба мати на увазі всі моменти процесу праці і його стадії, тобто зародження наукового задуму, дослідницько-експериментальної роботи, проектування, виготовлення, реконструкція, експлуатація. Такий підхід до охорони праці забезпечує безпеку виробничого процесу, як при створенні продукції, так і при подальшому її використанні. Щоб забезпечити безпеку роботи, збереження здоров’я і працездатності людини необхідно керуватися спеціально розробленими нормами і актами соціально-економічних, організаційних і гігієнічних заходів. Технічний процес металургії змінює умови, характер і зміст праці. Спорудження нових цехів, агрегатів і устаткування великої потужності, перехід на інтенсивні методи ведення технологічних процесів ускладнює взаємовідносини в системі «людина – машина», виникає ряд задач, пов’язаних із забезпеченням здоров’я і безпечних умов праці. Основною задачею охорони праці є зменшення вірогідності захворювань або ураження робітників з одночасним забезпеченням комфорту при максимальній продуктивності праці. Охорона праці базується на принципах пріоритету життя і здоров’я працівників відповідно до результатів виробничої діяльності на підприємстві, тому одним з особливо важливих заходів є розробка нових методів і засобів боротьби з небезпечними і шкідливими чинниками, такими як шум, висока напруга, електричний струм, вібрація, шкідливі речовини. Охорона праці встановлена і регламентується Конституцією України (28.06.96), Кодексом законів про працю України (1991), законом України «Про охорону праці» (21.11.2002) [20]. Захист навколишнього середовища в наш час розглядають як комплекс заходів, які здатні забезпечити єдність екологічної політики – економічного і соціального розвитку народного господарства зокрема. Охорона навколишнього середовища – це комплекс заходів, які націлені на раціональну взаємодію між діяльністю людини і охороною природи, забезпечуючи збереження і відновлення природних ресурсів, попереджуючих прямий і непрямий вплив результатів діяльності людини на природу. На Україні прийнятий ряд законів про охорону навколишнього середовища, [21] сформована система по захисту природи і раціональному використанню природних ресурсів, що передбачає систему стандартів охорони праці. Темою дипломної науково-дослідницької роботи є «Друга фаза композитів на основі міді, що отримані методом осадження у вакуумі». Дана робота проведена в металографічній лабораторії кафедри «Металознавство і термічна обробка металів» НТУ «ХПІ». При виконанні науково-дослідницької роботи застосовувалось таке обладнання: мікротвердомір ПМТ-3, прилад для стоншення зразків ПТФ-2, мікроскоп електронний, мікроскоп МІМ-7. Питання охорони праці і навколишнього середовища розглянуті для забезпечення здорових і безпечних умов праці дослідника на робочому місті.
6.2 Виробнича санітарія З урахуванням вимог ГОСТ 12.0.003–74* [22] в приміщенні лабораторії при виконанні науково-дослідницької роботи можливі небезпечні і шкідливі виробничі чинники, наведені в таблиці 6.1. Таблиця 6.1 – Перелік небезпечних і шкідливих виробничих чинників в приміщенні лабораторії
При виконанні науково-дослідницької роботи не вимагається постійної фізичної напруги або підняття і перенесення важких речей, тому робота дослідника відноситься до легких фізичних робіт категорії 1б. Енерговитрати організму (витрати енергії при виконанні роботи) – (121 – 150 ккал/г): (140–174 Вт). Згідно вимогам ГОСТ 12.1.005–88 [23] в приміщенні металографічної лабораторії передбачені допустимі параметри мікроклімату, наведені в таблиці 6.2. з урахуванням періоду року і категорії робіт по фізичній тяжкості. Дані метеорологічні умови досягнуті за допомогою природної і штучної вентиляції (приточно-витяжна), в холодний період року опалювання, згідно СНиП 2.04.05–91 [24] опалювання здійснено від тепломережі. Таблиця 6.2 – Допустимі норми температури, відносної вологості, швидкості руху повітря у виробничому приміщенні лабораторії
В процесі експерименту можливе виділення шкідливих речовин у вигляді парів і аерозолів, що утворюються при отриманні і дослідженні зразків. Перелік шкідливих речовин і їх гранично-допустимі концентрації (ГДК) згідно вимогам ГОСТ 12.1.005–88 [23] наведені в таблиці 6.3. Таблиця 6.3 – ГДК шкідливих речовин в повітрі робочої зони лабораторії
Забезпечення ГДК в приміщенні лабораторії досягнуто використанням приточно-витяжної вентиляції згідно з СНиП 2.04.05–91 [24]. В лабораторії передбачено природне і штучне освітлення. Природне освітлення приміщення – бічне одностороннє. Якнайменший розмір об’єкту розрізнення від 0,5 до 1 мм, тому зорові роботи, що виконуються на робочому місці відносяться до IV розряду, під розряду «в» згідно СНиП II-4–79 [25]. Природне освітлення характеризується коефіцієнтом природної освітленості – КПО (еІІІ), %.Нормативне значення КПО для IV – «в» розряду зорових робіт згідно СНиП II-4–79 [25] складає еIII = 1,5%. Оскільки дипломна робота виконана на Україні (м. Харків – IV-й світловий пояс), тому що нормативне значення КПО визначено по формулі: eIV = еIII·m·c (6.1) де еIII – значення КПО світлового клімату для третього поясу, дорівнює 1,5%; m – коефіцієнт світлового клімату, дорівнює 0,9; c – коефіцієнт сонячності клімату, дорівнює 0,85; еIV = 1,5·0,9·0,85 = 1,15% Реалізація КПО в лабораторії досягнута шляхом розрахунку площі світлових отворів у стадії проектування будівлі в цілому. Штучне освітлення в приміщенні – комбіноване і загальне рівномірне. Нормованою величиною штучного освітлення є мінімальне значення освітленості (Еmin, лк). Згідно СНиП II-4–79 [19] для IV – «в» розряду зорових робіт середній точності, контраст об’єкту розрізнення з фоном – середній, характеристика фону – середній; нормативне значення мінімальної освітленості складає 200 лк при загальному і 400 лк при комбінованому освітленні. Реалізація мінімальної освітленості в лабораторії досягнута використанням в якості джерела світла люмінесцентних ламп ЛБ80–4 та володіючих великою світловіддачею і спектром світла, близьким до природного освітлення. Розрахунок штучного освітлення у приміщенні лабораторії. Штучне освітлення в лабораторії–загальне рівномірне. Для даного розряду зорових робіт, виконуваних в лабораторії відповідає контраст об'єкта розрізнення–середній, фон–середній. Нормованою величиною штучного освітлення є мінімальна освітленість, що для проектованої ділянки становить Еmin=200 лк [25]. Вибір джерел світла залежить від наступних факторів: будівельні параметри, архітектурно-планувальні рішення, стан повітря, дизайн. Лампи накалювання – малоекономічні, мають світловіддачу до 26 лм / Вт і термін служби до 100 годин, але при роботі спотворюють спектр, нагріваються. Люмінесцентні лампи мають світловіддачу 75 лм / Вт і термін служби 1000 г. також характеризуються гарною передачею кольору, але разом з тим вони дорогі, вимагають спеціального обслуговування, мають складну систему пуску, шумлять і іноді мерехтять. Важко утилізуються. У приміщеннях з висотою стелі 7 м і вище застосовуються лампи типу ДРЛ. Тому що вони могутніші й мають світловіддачу до 90 лм / Вт. Висота лабораторії 4 м тому вибираємо люмінесцентні лампи типу ЛБ80–4.
Робимо розрахунок числа світильників у приміщенні лабораторії із формулою 5.2
де Еmin – задана мінімальна (нормована) освітленість, лк. Еmin = 200 лк; k – коефіцієнт запасу, приймаємо 1,6, тому що запиленість значно нижче 1 мг/м3, відсутність пар кислот і лугів; S – освітлювана площа, м2, S=8·4=32 м2; z – коефіцієнт мінімальної освітленості, характеризує нерівноваженість освітленості і є функцією багатьох змінних, але найбільшою мірою залежить від відношення відстані між світильниками до розрахункової висоти (L/h), Для люмінесцентних ламп приймаємо z = 1,1; n – число ламп у світильнику, n = 2 шт. η – коефіцієнт використання світлового потоку в частках одиниці. Для визначення η знаходимо індекс приміщення й попереднього коефіцієнта відбиття поверхні приміщення: стелі ρп = 70%, стін ρс = 50%, підлоги ρр = 30% для даного виду приміщення. Індекс приміщення
де A, B, h – довжина, ширина, і розрахункова висота (висота підвісу світильника над робочою поверхнею) приміщення, м.
де H – геометрична висота приміщення, м; hсв – звис світильника (довжина штанги або шнура, на яких він висить), м; hcв=0,2…0,8 м, прийнято hсв=0,4; hрп – висота робочої поверхні від рівня підлоги, м; hрп=0,8…1,0 м, прийнято hрп =0,8 м. h=4–0,4–0,8=2,8, i=8·4/2,8 (8+4)=0,95 Тоді коефіцієнт використання світлового потоку для люмінесцентних ламп беремо 37% Визначаємо кількість світильників за формулою 5.5
N=200·1,6·32·1,1/ 4960·2·0,37=3,1 св. Прийнято 3 світильника. Розрахунок штучного освітлення призведений методом коефіцієнта використання світлового потоку. Визначена кількість світильників та потужність ламп, що необхідні для забезпечення нормованої освітленості у приміщенні лабораторії. 6.3 Міри безпеки Все технологічне устаткування, що використовується в ході проведення дипломної науково-дослідницької роботи, живиться від електричної мережі. Особливу увагу приділено питанням електробезпеки. Приміщення лабораторії по небезпеці ураження людей електричним струмом відповідно до вимог ПУЭ-87 [26], відноситься до класу приміщень з підвищеною небезпекою, оскільки в приміщенні є можливість одночасного дотику людини до металевих будівель (труби водопроводу), що мають з’єднання з землею з одного боку, і металевому корпусу електроустаткування – з іншого. Устаткування застосоване для досліджень, має живлення низько- і високовольтне. Клас встановленого устаткування в лабораторії засобом захисту від ураження електричним струмом згідно ГОСТ 12.2.007–75* [27]: 1 – для низьковольтної сторони і 01 – для високовольтної. Технічне устаткування живиться від трифазної чотирьох дротяної мережі змінного струму з напругою 380/220 В з промисловою частотою 50 Гц з глухо заземленою нейтраллю. Таким чином, низьковольтна частина установки занулена, а високовольтна заземлена по ГОСТ 12.1.030–81* [28]. Конструктивними заходами електробезпеки служить ізоляція токоведучих частин і використання кожухів на електроустаткуванні для захисту від випадкового дотику до токоведучих елементів установок, застосування закритих конструкцій, вимикачів і перемикачів, рубильників з приводом важеля згідно ГОСТ 12.1.019–79* [29]. 6.4 Пожежна безпека Причини пожеж технічного характеру, які можуть виникнути в приміщенні термічної лабораторії: · спалах легкозаймистих і горючих рідин; · порушення технологічного процесу; · несправність електроустаткування (коротке замикання, перевантаження і великі перехідні опори); · недотримання графіка планового ремонту; · ремонт устаткування на ходу. Приміщення лабораторії, де проведена дипломна науково-дослідницька робота, згідно НАПБ Б.07.005–86 (ОНТП 24–86) [30] по пожежній і вибухопожежній небезпеці відноситься до категорії В-пожежонебезпечна, оскільки в лабораторії знаходяться тверді речовини і матеріали, що згорають. Необхідний ступінь вогнестійкості будівлі, в якій знаходиться приміщення термічної лабораторії ІІ, згідно ДНБ В.1.1–7–2002 [31]. Відповідно до вимог ГОСТ 12.1.004–91* [32] пожежна безпека в лабораторії забезпечена системою запобігання пожежі (СЗП), системою протипожежного захисту (СПЗ) і організаційними заходами. В якості СЗП передбачено: – робота на справних установках; – можливе вживання негорючих матеріалів, речовин; – вживання захисних кожухів для запобігання займання електроустаткування. Джерела забруднення води, повітря, землі відсутні, тому що названі речовини не перевищують нормативних значень. Дотримання вищевказаних нормативних параметрів небезпечних і шкідливих виробничих факторів дозволяє забезпечити безпечні умови роботи дослідника на робочому місці. 6.5 Захист навколишнього середовища При проведенні дипломної науково-дослідницької роботи шкідливої дії на оточуюче середовище не виявилено, оскільки в процесі експериментів не відбувався викид шкідливих речовин в атмосферу ГОСТ 17.2.3.02 – 78 [33]. Енергетичного забруднення навколишнього середовища не відбувалося. Відповідно до вимог ГОСТ 17.2.3.02–78 [33] вода, що використовується для охолодження, прямує в каналізацію, а звідти – на міські очисні споруди. Забруднення води в процесі експерименту не відбувалося [34]. Висновки 1. Виявлено, що у вихідному конденсованому стані структура фольг Cu-Mo, Cu-W, Cu-Та, Cu-Co, Cu-Fe є двофазною. 2. Метод спільного осадження у вакуумі нерозчинних компонентів, що випарені з різних джерел, дозволяє отримати гетерофазну нанодисперсну структуру. Застосування у якості другого компоненту Ta, Mo, W, які не розчиняються у міді, дозволяє збільшити дисперсність виділень. 3. Встановлено, що деградація структури у вивчених системах відбувається у певній послідовності, але швидкість процесу залежить від розчинності другого компоненту в матриці та від його атомного радіусу. 4. Зміни у зернистій структурі матриці корелюють із зміною морфології часток, хоча значно запізнюються у відношенні до них. Найбільшою структурною стабільністю володіють композити на основі системи Cu-Ta. Список джерел інформації 1. Бочвар А.А. Металловедение. Изд. 5-е М., Металлургиздат, 1956 г. 2. Бернштейн М.Л. Термомеханическая обработка металлов и сплавов. М., «Металлургия», 1968. Т. I. 3. Электронно-микроскопические исследования структуры жаропрочных сплавов и сталей. Сб. сталей под ред. С.Т. Кишкина. М., «Металлургия», 1969 4. Захаров М.В., Захаров А.М. Жаропрочные сплавы. М., «Металлургия», 1972. 5. Котрелл А.Х. Дислокации и пластическое течение в кристаллах. Пер. с англ. М.: Металлургиздат, 1958. 6. Мартин Дж., Доэрти Р. Стабильность микроструктуры металлических систем. Англия, 1976. Пер. с англ. − М.: Атомиздат, 1978. 7. Микромеханизмы дисперсионного твердения сплавов. Дж. Мартин: Пер. с англ. – М.: Металлургия, 1983. 8. Дисперсноупрочненные материалы. Портной К.И., Бабич Б.Н. Серия «Успехи современного металловедения». М., Металлургия, 1974 9. Горелик С.С. Рекристаллизация металлов и сплавов, М.: Металлургия, 1978 10. Уманский Я.С., Скаков Ю.А., Иванов А.Н., Расторгуев Л.Н. Кристалло- графия, рентгенография и электронная микроскопия. – М: Металлургия, 1982. 11. Пилянкевич А.Н. Практика электронной микроскопии.-М.: Машгиз, 1961. 12. Фрактография и атлас фрактограмм. Справочник/ Под ред. Дж. Феллоуза.-М.: Металлургия, 1982. 13. Практические методы в электронной микроскопии/ Под ред. Одри М. Глоэра. – Л.: Машиностроение, 1980. 14. Томас Г., Гориндж М.Дж. Просвечивающая электронная микроскопия.-М.: Наука, 1983. 15. Металловедение и термическая обработка стали. В 3-х т./ Под ред. Бернштейна М.Л., Рахштадта А.Г. – Т.1. Методы испытаний и исследования. – В 2-х кн. Кн. 1. – М.: Металлургия, 1991. 16. Экономика предприятия II, под ред. Горфинкеля В., Купринова Е.М. – Юнити, 1996. 17. Организация и планирование производственных предприятий. Под ред. Войталовского В.М. и др. СПБ ХЭФ, 1996. 18. Яковлев А.И. Социально – экономическая эффективность нововведений в условиях рынка, Киев, Украина.1995. 19. Покропивний С.Ф. и др. Экономика предприятия, учебник в двух томах, Киев, «Хвиле – Прес», 1995. 20. Збірник законів «Охорона праці». Київ: 2003. -120 с. 21. Никитин Д.П., Новиков Ю.В. Окружающая среда и человек: учеб. пособие для студентов вузов. – М.: Высш.шк., 1980. –424 с. 22. ГОСТ 12.0.003–74*. ССБТ. Опасные и вредные производственные факторы. Классификация – Введ. 01.01.76. Изменен 1978. 23. ГОСТ 12.1.005–88. ССБТ. Общие санитарно – гигиенические требования к воздуху рабочей зоны. – Введ. 01.01.89. 24. СНиП 2.04.05–91. Строительные нормы и правила. Отопление. Вентиляция и кондиционирование воздуха. – М.:Стройиздат, 1987. – 110 с. 25. СНиП II-4–79. Строительные нормы и правила. Естественное и искусственное освещение. Нормы проектирования. – М.: Стройиздат, 1980. – 48 с 26. ПУЭ-87. Правила устройства электроустановок. – М.: Энергоатомиздат, 1988. – 648 с. 27. ГОСТ 12.2.007–75*. ССБТ. Изделия электротехнические. Общие требования безопасности. – Введ. 01.01.78. Изменен в 1988 г. 28. ГОСТ 12.1.030–81*. ССБТ. Электробезопасность. Защитное заземление. Зануление. – Введ. 01.07.82. Изменен в 1987 г. 29. ГОСТ 12.1.019–79*. ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты. – Введ. 01.07.80. Изменен в 1986. 30. НАПБ Б.07.005–86 (ОНТП 24–86). Нормативний акт пожежної небезпеки. Визначення категорій будівель і споруд по вибухопожежної і пожежній безпеці. – М.: 1991. 31. ДНБ В.1.1–7–2002. Державні будівельні норми. Захист від пожежі. Пожежна безпека об’єктів будівництва. – К.: 2003. – 41 с. 32. ГОСТ 12.1.004–91*. ССБТ. Пожарная безопасность. Общие требования. – Введ. 01.07.92. 33. ГОСТ 17.2.3.02–78. ССОП. Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленных предприятий. – Введ. 01.01.80. 34. Правила охраны поверхностных вод от загрязнения сточными водами. – М: Изд-во Минздрава СССР, 1975. 35. Закон Украины «О гражданской обороне Украины». – Введ. 01.04.91. 36. Атаманюк В.Г. и др. Гражданская оборона. – М.: Высшая школа, 1986. 37. Депутат О.П., Ковалєнко І. В., Мужик І. С. Цивільна оборона. Навчальний посібник / За ред. полковника Франчука В.С. – Львів, Афіша, 2000 – 336 с. |
![]() |
||
НОВОСТИ | ![]() |
![]() |
||
ВХОД | ![]() |
|
Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |