рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Исследование свойств магнитных жидкостей методом светорассеяния

Число степеней свободы в цепочечном кластере выше. Между состояниями а) и б) существует энергетический барьер. Важно, что обе структуры возникают в отсутствие внешнего магнитного поля, однако при его приложении образование цепочечных кластеров более вероятно.

Когда агрегирование затрагивает большое число частиц, Джордан, используя матричный метод вычисления, показал, что и в случае малой концентрации магнитных частиц при приложении внешнего магнитного поля происходит агрегирование частиц с образованием цепочек или линейных кластеров, поскольку именно такой процесс требует наименьших энергетических затрат.


Модель капельных агрегатов в МЖ

В работе Ю.Н. Cкибина [25] указано, что усложнение модели магнитной жидкости связано с наблюдаемыми экспериментальными явлениями коалесценции и коацервации при увеличении концентрации твердых частиц и ПАВ в растворе. В МЖ микрокапельные агрегаты  при малых полях не видны в оптический микроскоп, но при напряженности магнитного поля порядка 8 кА/м в поле зрения появляются тонкие цепи из множества частиц, которые после выключения поля распадаются на множество мелких капелек, которые в свою очередь очень быстро растворяются. При включении поля капли концентрированной МЖ сливаются и деформируются, вытягиваясь вдоль поля.

Впервые В.В. Чеканов в работе [34] предложил рассматривать возникновение агрегатов в магнитных коллоидах как фазовый переход дипольный газ – жидкость. Эта идея оказалась плодотворной и представления об образовании микрокапельных агрегатов получили развитие в целом ряде работ [17], [33].

Так, в работе Сано и Дюи [49] рассматривают коллоидные частицы в МЖ как молекулы газа, причем влиянием на них молекул основы пренебрегается. Состояние, когда частицы существуют в основе  по отдельности, рассматривается как газ; если же частицы объединились в агрегаты, то такое состояние приравнивается к жидкой фазе.

В результате действия магнитного поля взаимодействие между частицами магнитного материала возрастает так сильно, что флуктуации концентрации приводят к спонтанному разделению коллоида на фазы с разными концентрациями частиц [33].Теория фазовых переходов в магнитных коллоидах получила развитие в работах А.Ю. Зубарева с сотрудниками [17]. В работе [33]  показано, что зародышами для образования агрегатов являются наиболее крупные частицы. В работе [17] предложена модель равновесного фазового перехода “газ – жидкость ” в ансамбле парамагнитных частиц с учетом образования линейных цепочечных кластеров. Недавно [14] высказана гипотеза, что в коллоидных системах могут возникать рыхлые квазиферрические агрегаты, известные как “фрактальные кластеры”. Их главная особенность заключается в том, что концентрация агрегированных частиц  меняется по степенному закону в зависимости от расстояния r до формального центра кластера:

,

где df -  называется фрактальной размерностью. В МЖ такие объекты могут образовываться за счет  действия молекулярных сил, аналогично классическому механизму коагуляции коллоидов.

По отношению к реальным МЖ на практике используются все вышеперечисленные модели в зависимости от задач, стоящих перед исследователями. Это связано с тем, что применение магнитных жидкостей имеет очень широкий спектр, который часто требует иногда взаимоисключающих свойств МЖ: в одних случаях требуется отсутствие в МЖ агрегатов частиц, а в других – наличие таких агрегатов является обязательным условием функционирования МЖ в конкретных условиях, например, в дефектоскопии или визуализации магнитной записи [19]. Поэтому вполне закономерен интерес исследователей к оптическим методам изучения коллоидных систем как наиболее чувствительным и информативным методам диагностики МЖ и вообще исследованию МЖ как объекта.

ГЛАВА 2.  ФИЗИЧЕСКИЕ  ОСНОВЫ  МЕТОДА СВЕТОРАССЕЯНИЯ.

Введение

Однородная среда не способна рассеивать свет, так как вторичные световые волны, испускаемые всеми их элементарными объемами, полностью гасят друг друга при   интерференции.

Все среды, за исключением вакуума являются в определенном смысле недородными. Рассеяние света в чистой жидкости, которую мы считаем однородной средой, обусловлено флуктуациями плотности в объемах, малых по сравнению с кубом длины световой волны.

Прозрачная среда, на которую падает свет, представляет из себя скопление большого числа молекул. Электромагнитное поле вблизи данной молекулы наводит в ней переменный дипольный момент, который в свою очередь приводит к появлению вторичного дипольного излучения. Жидкости являются оптически плотными, т.е. расстояние между их молекулами порядка 2-3 (для газов при нормальных условиях порядка 30), что намного порядков меньше длины падающего света (40007000). Вследствие этого, каждая молекула находится под воздействием не только поля падающей волны, но и суммы вторичных полей всех остальных молекул. Само же вторичное поле молекулы зависит от того поля, в котором она находится, т.е. мы имеем дело с электромагнитной задачей многих тел: молекулы оказываются связанными. Решение задачи при допустимых приближениях состоит в том, что внутри среды вторичные волны налагаются друг на друга и на падающую волну и дают преломленную волну, распространяющуюся  со  скоростью  ,  где  с – скорость света в вакууме, а n – показатель преломления. Падающая волна полностью гасится внутри среды; этот факт называют теоремой гашения Эвальда-Озеена. За пределами среды вторичные волны, налагаемые друг на друга, дают зеркально отображенную волну. Показатель преломления n зависит от числа молекул в единичном объеме и поляризуемости отдельной молекулы, т.е. в сущности преломление – это одно из явлений рассеяния, а показатель преломления – по существу результат рассеяния множеством молекул, из которых состоит среда.

Обычно при анализе взаимодействия пучка света с оптически гладкой границей раздела предполагается, что преломляющая среда является идеально однородной, в то время как на самом деле она однородна лишь в статистическом смысле. Среднее число молекул в данном элементе объема постоянно, однако в любой момент времени число молекул в этом элементе будет иным, нежели в другой момент времени. Именно такие флуктуации плотности приводят к рассеянию в оптически плотных средах. Нужно помнить, что хотя мы и говорим о флуктуациях плотности, но рассеивающими элементами являются именно молекулы, поэтому точнее говорить о флуктуационной теории рассеяния на молекулах, чем о рассеянии на флуктуациях.

В растворах говорят о рассеянии света на флуктуациях концентрации растворенного вещества в объемах того же порядка величины. С последним рассеянием связана интенсивность избыточного рассеяния I, представляющая разность между интенсивностями рассеяния раствора и чистого растворителя.

 Важно различать рассеяние на флуктуациях и рассеяние на частицах. Хотя математические выражения часто аналогичны, физическое содержание их несколько различно: рассеяние на флуктуациях, например, описывается на основе термодинамических законов, в то время как рассеяние на частицах нет. Или, например, рассеяние на флуктуациях плотности в идеальных газах имеет такой же функциональный вид, как и рассеяние на разбавленных взвесях частиц, малых по сравнению с длиной волны. Мы будем называть последний тип рассеяния рэлеевским рассеянием, между тем в теории рассеяния на флуктуациях этот термин может иметь несколько иное значение.

Рассматриваемая нами проблема – это задачи о взаимодействии света определенной длины волны с отдельной частицей (т.е. с некоторой вполне определенной совокупностью очень большого числа молекул), которая погружена в остальном среду. Под однородной будем понимать среду, когда масштаб молекулярной неоднородности мал по сравнению с длиной волны падающего света. Мы будем пренебрегать рассеянием на флуктуациях молекул растворителя, которое обычно гораздо слабее, чем рассеяние на частицах. Несмотря на то, что частица может иметь сложную форму и состоять из нескольких компонент, предположим, что вещество частицы в каждой точке можно описывать микроскопическим образом. Это означает, что оптические частицы полностью определяются частотной зависимостью оптических характеристик, так что квантовый подход к описанию элементарных возбуждений не требуется.

В первой части нашего рассмотрения мы ограничимся случаем упругого рассеяния: частота рассеянного света такая же, как и у падающего света. Упругое рассеяние иногда называют когерентным рассеянием, однако термин «упругое» физически более нагляден, а понятие когерентности как определенной связи между фазами различных источников излучения строго устанавливается в оптике.

Понять физический механизм рассеяния отдельной частицей можно, не конкретизируя вида частицы и не прибегая к каким-либо вычислениям. Рассмотрим произвольную частицу, которую разобьем мысленно на малые области (рис. 1).

                                                                                                   А



      Падающий свет

                                                         

                                                                                                                       Рассеянные элементарные

                                                                                   волны 


                                                                          Маленькие диполи


Рис. 1. Рассеяние поля в точке А – результат сложения всех элементарных волн от областей, на которые разбита частица.


Приложенное колеблющееся поле (поле электромагнитной волны) наводит в каждой области дипольный момент. Эти диполи колеблются с частотой приложенного поля и создают вторичное излучение во всех направлениях.

Рассеяние диполями поля являются когерентными т поэтому рассеянное поле в точке А получается сложением рассеянных волн с учетом фазовых соотношений между ними. Эти фазовые соотношения зависят от направления рассеяния, поэтому рассеянное поле будет меняться с направлением рассеяния. Если частица мала по сравнению с длиной волны, то все вторичные волны находятся примерно в фазе, поэтому для такой частицы рассеяние мало меняется с направлением. С увеличением размера частицы возрастают возможности для взаимного усиления или подавления рассеянных волн, откуда следует, что чем больше частицы, тем больше пиков и провалов в индикатрисе рассеяния. Форма частицы имеет важное значение: если частицу, указанную на рис. 1 деформировать, то все фазовые соотношения изменяются, а, следовательно, изменяется и индикатриса рассеяния.

Фазовые соотношения между рассеянными волнами зависят от геометрических факторов: направления рассеяния, амплитуды и формы.

Амплитуда же и фаза наведенного дипольного момента для данной частоты зависят от свойств вещества, из которого состоит частица, поэтому для полного описания рассеяния и поглощения малыми частицами необходимо знать отклик объемного вещества на осциллирующие электронные поля.

Для некоторого класса частиц рассеянное поле можно найти приближенно путем разбиения частиц на невзаимодействующие между собой дипольные рассеиватели и сложения рассеянных волн. Такое приближения называется приближением Рэлея-Ганса.

В реальных условиях приходится иметь дело не с изолированной частицей, а с большим их числом в растворах. Строгий теоретический расчет рассеяния многими частицами является сложной задачей. Однако эти трудности можно обойти, воспользовавшись еще одним приближением.

Частицы в скоплении находятся в электромагнитном взаимодействии: каждая из них возбуждается внешним полем и суммарным полем рассеяния всех других частиц; при этом поле, рассеянное частицей, зависит от полного поля, в которое она помещена. Значительные упрощения возникают в предположении однократного рассеяния: число частиц достаточно мало, а расстояние между ними достаточно велико, так что в окрестности каждой частицы полное поле, рассеянное всеми частицами, мало по сравнению с внешним полем. При этом предположим, полное рассеянное поле представляет сумму полей, рассеянных отдельными частицами, каждая из которых находится под воздействием внешнего поля в изоляции от других частиц. В реальных лабораторных условиях можно приготовить разбавленные взвеси с частицами достаточно малого размера, чтобы обеспечить режим однократного рассеяния.

Помимо предположения об однократном рассеянии будем считать, что частиц много, и расстояние между ними случайны, что отвечает некогерентному рассеянию. Это означает, что фаза волн, рассеянных отдельными частицами, не связаны между собой каким-либо определенным соотношением, поэтому полная интенсивность рассеяния всех частиц равна сумме интенсивностей рассеяния отдельными частицами.


Уравнения Максвелла и распространение плоских волн с учетом поглощения и пространственной дисперсии.

Различные вопросы электромагнитной теории изложены в огромном количестве книг по электромагнетизму, оптике и поляризации света. Удобно собрать используемый математический аппарат в одном месте, с едиными обозначениями, чтобы избежать неизбежной путаницы в обозначениях различных авторов.

Уравнения Максвелла для макроскопического электромагнитного поля внутри вещества в системе единиц СИ могут быть записаны в виде:

                                                                                                     (1)

                                                                                               (2)

                                                                                                       (3)

                                                                                           (4)

где - напряженность электрического поля, - магнитная индукция.

Электрическая индукция  и напряженность магнитного поля  определяются равенствами:

                                                                                                      (5)

                                                                                                       (6)

где - электрическая поляризация (средний электрический дипольный момент единицы объема),  - намагниченность (средний магнитный дипольный момент единицы объема),  - диэлектрическая постоянная (вакуума),  - магнитная постоянная (вакуума).

Уравнения (1) – (6) должны быть дополнены материальными уравнениями:

                                                                                                           (7)

                                                                                                         (8)

                                                                                                          (9)

где - проводимость,  - магнитная восприимчивость,  - электрическая восприимчивость.

Коэффициенты макроскопической теории  и  зависят от свойств рассматриваемой среды, при этом будем считать, что они не зависят от полей (среда линейна), координат (среда однородна) и направления (среда изотропна).

Используя классическую теорию термодинамики, для описания рассеяния света можно ввести параметры Стокса.




Вывод параметров Стокса и их свойства.

Поскольку полный вывод параметров Стокса в современной литературе нелегко найти в одном месте, полезно охарактеризовать основной путь, ведущий к установлению связей между этими параметрами и основным состоянием поляризации рассеянного излучения [ ]. Рассмотрим элементарный процесс рассеяния отдельной частицей, помещенной в точку О на рис.2, а.

 












a)                                                                                     б)    


Рис.2  Графическое изображение элементарного процесса рассеяния и определение используемой системы координат. а – правосторонняя ортогональная система координат для падающего и рассеянного излучений, определение угла рассеяния  и элемента телесного угла; б – эллипс поляризации, правосторонняя система координат, оси и другие параметры.


Предположим, что в результате этого процесса получается полностью поляризованное монохроматическое излучение с произвольной ориентацией эллипса поляризации, распространяющееся в направлении 3 (перпендикулярно плоскости чертежа рис.2, б). Это направление вместе с направлением падающего излучения I0 и точкой О определяет плоскость рассеяния. Два других направления 1 и 2 совместно с направлением 3 образуют правую ортогональную систему координат с центром в точке О/. Направления 1 и 2 всегда выбираются соответственно перпендикулярно и параллельно плоскости рассеяния.

Чтобы найти соотношение между вектор-параметрами Стокса I0 и I, которые связаны матрицей рассеяния (10) и комплексными амплитудами S1 и S2, определяемые из теории, необходимо, прежде всего, сделать два вполне справедливых допущения.

                          .                                   (10)

Во-первых, примем, что экспериментально можно определить (например, с помощью анализаторов и пластинок в ¼ длины волны) осреднение по времени амплитуды и разности фаз колебаний электрического вектора вдоль направлений 1 и 2 [ ].

Во-вторых, предположим, что значения комплексных амплитуд рассеяния вдоль этих направлений можно теоретически выразить через амплитуды падающего излучения (это делается при помощи теории Ми). Рассмотрим теперь поле излучения вдоль фиксированной плоскости, проходящей через точку О/, которая удалена от точки О на расстояние, достаточное для выполнения указанных выше условий освещения (рис 2, б). Принимая во внимание, как обычно, наличие гармонических колебаний вектора , происходящих с угловой частотой , можно записать

                                     ,

                                                                     (11)

где

относятся к компонентам вектора  вдоль направлений 1 и 2 соответственно;  и  - максимальные значения амплитуд  и . Фазовые углы  и  отсчитываются таким образом, что разность фаз  является постоянной величиной. Согласно принятым ранее допущениям, значения  и  также должны быть постоянными. Правая часть выражения (11) дает параметрическое представление эллипса поляризации, который является результатом двух связанных гармонических колебаний, распространяющихся вдоль направлений 1 и 2. Действительно, исключая угол  при помощи очевидных тригонометрических преобразований , после алгебраических упрощений получаем из (11)

                                                                            (12)

Это общая форма уравнения эллипса, описываемого концом вектора электрического поля. Большая и малая оси этого эллипса вдоль направлений  и  необязательно совпадают с осями координат 1 и 2, а образуют с ними угол . Чтобы определить угол , произведем стандартный поворот координатных осей 1 и 2 при помощи матрицы преобразования

,

которая дает компоненты поля вдоль направлений  и .  Используя (11), получаем          

Раскрывая тригонометрическое выражение , предыдущие формулы перепишем в виде

,

                                            ,                                        (13)

где

                                       ,   

                                    .             (14)

Исключая угол  из системы (13), после упрощений находим

                                                  (15)

Используя соотношение (14) и производя стандартные преобразования, полагаем

Следует подчеркнуть, что уравнение (15) не имеет смысла, если . Последнее равенство выполняется, когда , т.е. , где   - любое целое число, включая нуль. В случае  эллипс поляризации вырождается в прямую. Заметим, что при помощи указанного выше поворота осей уравнение эллипса (15) можно привести к нормальной форме

,

при которой центр эллипса находится в начале координат, а большая  и малая  полуоси располагаются соответственно вдоль направлений  и . Сравнивая нормальную форму с общим видом уравнения (15), отмечаем, что третий член в левой части (15) пропадает, т.е.

 Используя выражение (14), после группировки членов и упрощений получаем

,

или

                                                                                           (16)

Будем считать, что соотношение (16) справедливо даже и тогда, когда , т.е. . В этом случае  и имеется неопределенность относительно квадранта плоскости (1,2), в котором лежит главная ось эллипса. Эта неопределенность устраняется, если известна разность фаз .

Выведем теперь из (15) другие соотношения, используя определения большой и малой полуосей эллипса поляризации. При условии, что уравнение (16) остается справедливым, имеем

                          

т.е.

Из соотношений (14) следует, что числитель в правой части последнего уравнения обращается в . Используя указанное выше выражение для , получаем

                                                                                      (17)

Теперь можно показать аналитически, что для рассматриваемого эллипса поляризации длина диагонали D любого описанного около него прямоугольника, т.е. расстояние 2О/R на рис 2, б, является инвариантной

для всех углов . Отсюда следует, что для всех  имеем

                                                                                              (18)

Поэтому, сравнивая (18) с (17), получаем

                                                                                               (19)

Прежде чем получить выражения для параметров Стокса, необходимо вывести еще несколько дополнительных соотношений. Определим угол  следующим образом:

,       .

Используя обычные свойства алгебраических отношений и некоторые тригонометрические тождества, получим

                                 ,                                  (20)

Аналогичным образом введем другой вспомогательный угол :

                                      ,                                                  (21)

После подстановки (21) в (16), имеем

                                                                                            (22)

Наконец, разделив (19) на (18), получаем

                                                                                    (23)

Из (20), (21) и (23) находим

                                                                                         (24) 

Получим теперь соотношения между четырьмя параметрами Стокса I, Q, U и V для полностью поляризованного потока излучения и такими параметрами поляризации как углы  и . Для этого определим параметры Стокса следующим образом:

                                                                                              (25)

Соответствующий переходный множитель между потоками энергии и квадратами амплитуд электрического поля ради простоты в тождествах (25) опущен. Возводя в квадрат все четыре параметра (25) и затем складывая их, замечаем, что

                                                                                            (26)

Это равенство справедливо только в том случае, когда рассматриваемый поток излучения полностью поляризован.

Далее, из (16), (20) и (23) имеем

,

.

При подстановке этих выражений в (26) получаем

или

Таким образом, можно записать выражения для четырех параметров Стокса в двух удобных формах, полностью описывающих состояние поляризации электромагнитного излучения. Именно,

                                    

Остается теперь рассмотреть вопрос о направлении вращения конца электрического вектора, описывающего эллипс поляризации. Из выражений (11) для компонент  и  следует, что если , то конец вектора результирующего электрического поля  описывает эллипс в направлении движения часовой стрелки в фиксированной плоскости, проходящей через точку О/. На эллипсе, изображенной на рис. 2,б, это направлении указано стрелками. Для данного случая термин правосторонняя поляризация обосновывается тем, что в фиксированный каждый момент времени концы электрических векторов непрерывного цуга волн описывают вполне определенную спираль, или винтовую линию, в направлении движения часовой стрелки. Поляризация будет левосторонней (направление движения против часовой стрелки в плоскости рис. 2,б), .

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.