рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Исследование свойств магнитных жидкостей методом светорассеяния

Рис. 1 Экспериментальная установка для снятия индикатрисы рассеяния


Составные элементы установки монтировались на оптической скамье. Источником  света  служит  гелий-неоновый лазер 1 с длиной волны 632,8 нм, мощностью 2 мВт. Магнитная жидкость наливается в кювету 3, которая представляет собой два коаксиальных цилиндра, изготовленных из стекла. Во внешний цилиндр наливается керосин, для уменьшения интенсивности рассеяния света самой кюветой. На оси, перпендикулярно направлению распространения падающего луча, расположен фотоэлектронный умножитель 4, который закреплен на поворотном столике 9 и может поворачиваться от 00 до 3600. Питание фотоэлектронного умножителя осуществляется источником высокого напряжения Б5 – 24 А (7). С выхода фотоэлектронного умножителя сигнал поступает на усилитель постоянного тока 5, а усиленный сигнал  - на вход регистрирующего устройства, в качестве которого применен запоминающий осциллограф С8 – 13.  Луч света также проходит через электромеханический прерыватель 2, который представляет собой диск с четырьмя прорезями, вращающийся в вертикальной плоскости, служащий для модуляции оптического пучка. Питание прерывателя осуществляется источником постоянного напряжения ЛИПС, величиной 12 В.

Рассматривается два случая:

1. Луч света падает горизонтально на исследуемый образец, т.е. перпендикулярно оси кюветы.

2. Луч света падает вертикально, т.е. параллельно оси кюветы.

Во втором случае для формирования вертикально падающего луча на его пути помещается зеркало под углом 450.

Методика измерений состояла в измерении интенсивности света, рассеянного образцом магнитной жидкости в зависимости от угла наблюдения. Измерения проводились от 200 до 1600 с шагом в 100.

Падающий свет был поляризован перпендикулярно или параллельно плоскости рассеяния.

По полученным данным построены индикатрисы рассеяния, представленные на рис. 2.

Мерой несимметричности индикатрисы рассеяния являлось отношение интенсивностей рассеянного света под углами 450 и 1350 к направлению распространения света, поляризованного

                                                   

При изменении угла рассеяния изменялся рассеивающий объем. Для приведения к одинаковому объему результаты измерения умножались на .

По данным Ю.Н. Скибина:

                                                 .

По полученным данным  .

                                            



                             

                                Рис.2  Индикатрисы рассеяния


Из полученных диаграмм видно, что рассеяние подчиняется закону Рэлея и может быть описано формулами классической электродинамики.


Расчет коэффициента деполяризации

Согласно классической теории рассеяния в газах [10] к рассеянию света на флуктуациях плотности добавляется еще рассеяние на флуктуациях ориентации. Теория рассеяния света в газах с анизотропными молекулами  была развита Борном и Гансом.

Рис. 1

 

 

N

 

Рассеянный луч

 

 

 
Рассмотрим случай, когда

падающий  свет  линейно поляри-

Падающий свет

 
зован.  Пусть   - электрический 

вектор   падающей  волны (Рис.1).

Это  поле индуцирует в молекуле

дипольный момент , направление

которого     уже   не   совпадает   с

направлением поля . Различные

молекулы    ориентированы    по

разному,  поэтому   и   дипольные

моменты  будут иметь различные

направления. На пути рассеянного

луча поставим поляризационную призму N, чтобы привести к одному направлению поля излучения различных диполей. Обозначим через  - единичный вектор, который лежит в плоскости поляризации, который лежит в плоскости поляризации призмы N и направлен перпендикулярно и рассеянному лучу. Расчет ин6тенсивности рассеянного света за поляризационной призмой дает следующий результат:

                                                            (1)

где V – рассеивающий объем газа;  -  концентрация молекул;  - радиус-вектор, имеющий направление от рассеивающей частицы в точку наблюдения;  - длина волны рассеивающего света;  - угол между векторами  и ;  - средняя поляризуемость и  - оптическая анизотропия молекул:

                                                                      (2)

Таким образом, полная интенсивность светорассеяния газа состоит из суммы двух слагаемых: рассеяния от флуктуаций плотности, которое пропорционально , и рассеяния от флуктуаций анизотропии, которое пропорционально . Для краткости называют рассеяние света на флуктуациях изотропным рассеянием, а рассеяние на флуктуациях ориентации – анизотропным рассеянием света.

Обычно изучают рассеяние света под прямым углом. Проведем координатные оси х, у, z (Рис.2) и направим ось х вдоль луча, а ось у – по направлению

рассеянного луча.          

                                        

                                                               

                                                                       


   









                                                             Рис.2.

Рассмотрим рассеяние света в двух случаях: электрический вектор падающей волны направлен по оси z и этот же вектор направлен по оси у.

1. Электрическое поле падающей волны направлено по оси z.

Поместим на пути рассеянного света поляризационную призму и повернем ее так, чтобы в одном  случае  вектор поляризации  был направлен по оси х, а во втором случае – по оси z. Обозначим соответствующие интенсивности рассеянных лучей через  и . Для х – компоненты рассеянного луча  и из (1) получаем:

                                                                                         (3)

Для z – компоненты   и

                                                                               (4)                                                                                                                               

Полная интенсивность равна сумме интенсивностей:

                                                                              (5)

2. Электрическое поле падающей волны направлено по оси у.

Ориентируем поляризационную призму так, чтобы сначала вектор поляризации  был направлен по оси х, а потом по оси z. В обоих случаях  и поэтому

                                                                                 (6)

и полная интенсивность

                                                                                         (7)

3. Коэффициент деполяризации.

В случае, когда падающий луч поляризован так, что его электрический вектор направлен по оси z, а наблюдение рассеянного луча происходит по оси у, коэффициент деполяризации обозначают через :

                                                                                          (8)

В другом случае, когда электрический вектор в падающем луче направлен по оси у (горизонтально), совпадающим с направлением наблюдения рассеянного луча, коэффициент деполяризации обозначается  и согласно формуле (6)

                                                                                                      (8 / )

Наконец, когда падающий луч неполяризован, то из формул:

                                                                                    

                                                                                (9)

получим

                                                                                          (10)

Если молекулы изотропны, то  и .

Связь между коэффициентами деполяризации  и  следующая:

                                                                                                        (11)

Измерение коэффициента деполяризации  или  позволяет рассчитать оптическую анизотропию молекул :

                                             

                                             .


Экспериментальное определение коэффициента деполяризации

Экспериментально определение коэффициента деполяризации света, рассеянного МЖ производилось с помощью фотоэлектрического метода. Источником света служил гелий-неоновый лазер  мощностью 2 мВт, установленный так, чтобы колебания светового вектора происходили в плоскости XOZ, как указано на рис. 2, вектор  параллелен оси z. Интенсивность рассеянного света регистрировалась с помощью ФЭУ-27 под углом 900 к направлению распространения света (по оси у на рис. 2). Компоненты интенсивности рассеянного света  и  поляризованные соответственно параллельно осям z и х выделялись с помощью призмы Аренса, а коэффициент деполяризации определялся как отношение этих компонентов в соответствии с формулой (8):

                                                

Во втором случае лазер устанавливался так, чтобы колебания вектора  излучения лазера происходили в плоскости YOZ, и вектор  был направлен по оси у. Призма Аренса ориентировалась так, чтобы выделить компоненту  (вектор поляризации  направлен по оси х) и  (вектор  направлен по оси z). Коэффициент деполяризации определялся как отношение этих компонентов по формуле (8 / )

                                                     

В третьем случае падающий луч был неполяризован (свет от лампы КГМ) т определялись две компоненты  и  соответствующей ориентировкой призмы Аренса, а коэффициент деполяризации определялся по формуле (10):

                                                   

Для уменьшения погрешности измерения свет модулировался прерывателем и регистрировался ФЭУ-27, сигнал с которого подавался на вход осциллографа С8-13.

Исследованные МЖ представляли собой коллоидные растворы магнетита и феррита кобальта в керосине. Объемные концентрации исследованных образцов составляли:

                                    

Проведенные измерения показали, что значения коэффициентов деполяризации  и  составили:


Относительная ошибка измерений коэффициентов деполяризации составляет:

Расчет коэффициента деполяризации

Расчет коэффициента деполяризации для частиц магнетита со средним размером частиц 10 нм, апрокисмируемых эллипсоидами вращения с отношением осей , диэлектрической проницаемости магнетита на оптической частоте  и диэлектрической проницаемостью керосина , по формуле классической теории деполяризации для газов:

                                              

выполнил Ю.Н. Скибин, который при заданных параметрах получил значение . Сравнив это значение с экспериментально наблюдаемым , Скибин пришел к выводу, что деполяризацию света, рассеянного  МЖ  на основе магнетита в керосине при объемной концентрации порядка – 0,1 % невозможно объяснить только анизотропией поляризуемости коллоидных частиц, и предложил учесть диполь-дипольное взаимодействие частиц, которое приводит к взаимной корреляции магнитных моментов, а следовательно и осей несферических коллоидных частиц. С этой целью вводится  - средняя анизотропия тензора поляризуемости и коэффициент , учитывающий взаимодействие частиц, а формула для коэффициента деполяризации принимает вид:

                                           

где для идеального газа , а для взаимодействующих частиц .

Воспользовавшись теорией Орнштейна – Цернике [Ансельм А.И. Теория электрооптических явлений в неполярных жидкостях //ЖЭТФ. – 1947. – Т. 17, вып. 6 – С. 489-506], ему удалось получить для однодоменных частиц магнетита со средним размером 11 нм  при  объемной концентрации частиц 0,1 % и температуре 300 К значение коэффициента .

Согласно нашим оценкам, если рассматривать эллипсоид вращения, состоящий из двух объединившихся частиц, размер которых порядка 10 нм, соотношение осей  то , что в 23 раза превосходит результат, полученный Скибиным Ю.Н. при соотношении осей .

Понятно, что это оценки лишь по порядку величины, но если учесть, что в жидкости существуют агрегаты не только из двух частиц, но из 3, 4 и т.д., то результаты по рассеянию света могут быть объяснены в модели цепочечных агрегатов частиц.


Зависимость коэффициента деполяризации от концентрации.

 

Одним из возможных путей изучения механизма светорассеяния является исследование динамики рассеяния света в импульсных электрических и магнитных полях.

Схема экспериментальной установки, предназначенной для изучения процессов рассеяния света магнитной жидкостью в импульсных магнитных полях, представлена на рисунке 4.

                                               

    3                                         2                            



С8 – 13

 

УПТ

 
                                                       4              5                      

                           Н                  

                                                                                                           

Б5-24А

 
    1               Р                                                                               7          

          Р/                                                                                                 6

       


 С1 – 65 А

 
11

 


           8                                                            

 ГПИ

 

                                                                            Rдоб

 


                                                    12 

ЛИПС

 
                 9

 



                                                                   10    

Рис.4  Экспериментальная установка для изучения рассеяния света в импульсных магнитных полях.


Она представляет собой кювету цилиндрической формы 3, изготовленную из стекла и расположенную в области однородного магнитного поля катушек Гельмгольца 2, создающих магнитное поле напряженностью до 8 кА/м. Источником света служит гелий-неоновый лазер 1 с длиной волны 632,8 нм. Для создания импульсов магнитного поля используется генератор напряжения прямоугольной формы 8, управляющий работой транзисторного ключа. На базу транзистора 9 подается управляющий импульс напряжения прямоугольной формы амплитудой порядка 9 В. Форма импульса магнитного поля контролируется по форме тока, протекающего в катушках, при помощи электронного осциллографа С – 65 А (11), включенного параллельно добавочному сопротивлению 12, величиной 1 Ом.

Регистрация рассеянного света производилась при помощи фотоэлектронного умножителя ФЭУ – 27 при различных углах наблюдения . Сигнал с ФЭУ усиливался с помощью усилителя постоянного тока 5 и подавался на вход запоминающего осциллографа 6. Плоскость поляризации падающего света РР/ была установлена перпендикулярно плоскости наблюдения.

По полученным данным были построены кривые нарастания интенсивности и кривые  уменьшения интенсивности рассеянного света со временем, после выключения магнитного поля. Используя эти кривые можно рассчитать  коэффициент вращательной диффузии , а затем найти гидродинамический диаметр частицы из соотношений:

                ,     ,    ,    ,

где Дж/К, , .           

Подставляя полученные данные в конечную формулу, находим, что .

Таким образом, можно сделать вывод, что рассеяние света МЖ  в магнитном поле определяется агрегатами, состоящими из нескольких десятков частиц.


ЦИТИРУЕМАЯ ЛИТЕРАТУРА


1.            Аксельрод Л.А., Гордеев Г.П., Драбкин Г.М., Лазебник И.М., Лебедев В.Г. Анализ малоуглового рассеяния поляризованных нейтронов в ненамагниченных феррожидкостях // ЖЭТФ. – 1986. –  Т. 91, вып. 2(8). – С. 531-541.

2.             Берковский Б.М., Медведев В.Ф., Крипов Н.С. Магнитные жидкости. – М.: Химия, 1989. – 240 с.

3.             Бибик Е.Е. Приготовление феррожидкостей // Коллоидный журнал. – 1973. – Т.35, №6. – с. 1141.

4.             Бибик Е.Е. Эффекты взаимодействия частиц в дисперсных ферромагнетиках: Автореф. дис. … докт. хим. наук. Л.: ЛТИ, 1971.

5.             Бибик Е.Е. Магнитооптический эффект агрегирования в поперечном электрическом  поле // Коллоид. Журнал. – 1970. – Т. 32.  №2. – с. 307.

6.             Бибик Е.Е., Бузунов О.В. Достижения в области получения и применения ферромагнитных жидкостей /ЦНИИ «Электроник». – М., 1979. – 60 с.

7.             Блум Э.Я., Майоров М.М., Цеберс А.О. Магнитные жидкости. – Рига: Зинатне, 1986. – 386 с.

8.             Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами: Пер с англ. – М.: Мир, 1986. – 664 с.

9.             Воюцкий С.С. Курс коллоидной химии. – М.: Химия, 1976. – 512 с.

10.        Вукс М.Ф. Рассеяние света в газах, жидкостях и твердых растворах. Л.: ЛГУ, 1977, 320 с.

11.        Гермашев В.Г. Стабилизация углеводородных феррожидкостей поверхностно-активными веществами. Дис. … канд. физ.-мат. наук. – Л., 1976. – 135 с.

12.        Диканский Ю.И. Эффекты взаимодействия частиц и структурно-кинетические процессы в магнитных коллоидах: Автореф. … докт. физ.-мат. наук. – Ставрополь, 1999, 35 с.

13.        Дроздова В.И., Скибин Ю.Н., Шагрова Г.В. Исследование структуры разбавленных магнитных жидкостей по анизотропному рассеянию. Магнитная гидродинамика, 1987, №2, С. 63-66.

14.        Елфимова Е.А. Эффективная магнитная проницаемость агрегированной феррожидкости: влияние фрактальных агрегатов // Сб. научных Трудов 10 международной конференции по магнитным жидкостям 2002. C.142-147.

15.        Зубарев А.Ю. К теории кинетических явлений в умеренно концентрированных магнитных жидкостях //Коллоидный журнал. – 1995. – Т. 57, №3. – С. 335 – 341.

16.        Зубарев А.Ю. Юшков А.В., Искакова Л.Ю. К теории динамических свойств неразбавленных магнитных жидкостей. Эффект цепочечных агрегатов // Магнитная гидродинамика. – 1998. – Т.34. №4. – С. 324 – 335.

17.        Зубарев А.Ю., Исканова Л.Ю., Романчук А.П. Фазовые переходы в магнитореологических суспензиях // Сб. науч. Трудов 10 международной конференции по магнитным жидкостям 2002. – C. 124-128

18.        Ландсберг Г.С. Оптика. М.: Наука, 1976.- 928 с.

19.        Магнитные жидкости в машиностроении /Д.В. Орлов и др.: Под общей ред. Д.В. Орлова, В.В. Подгорнова. – М.: Машиностроение. 1993. -  272 с.

20.        Надворецкиий В.В., Соколов В.В. Поглощение ультразвука в магнитной жидкости с эллипсоидальными агрегатами // Магнитная гидродинамика. – 1997. – Т. 33, №1. – С. 30-34.

21.        Падалка В.В., Ерин К.В. Оптический метод обнаружения агрегатов в разбавленных магнитных коллоидах // Сборник научных трудов 10-й Международной Плесской конференции по магнитным жидкостям. Иваново: Изд-во ИГЭУ, 2002. – С. 162 – 167.

22.        Пшеничников А.Ф., Шурубер И.Ю. Расслоение магнитных жидкостей: условия образования и магнитные свойства капельных агрегатов // Известия АН СССР сер. физ.- 1987. – Е. 51б №6. – С. 1081-1087.

23.        Розенцвейг Р. Феррогидродинамика. – М.: Мир. 1989. – 357 с.

24.        Скибин Ю.Н. Молекулряно-кинетический механизм электро- и магнитооптических явлений в магнитных жидкостях. Дис. … доктора физ.-мат. наук. – Ставрополь, 1996. – 319 с.

25.        Скибин Ю.Н. Деполяризация света рассеянного магнитной жидкостью // Коллоид. Ж. – 1984. – Т. 46, №5. – С. 955-960.

26.        Такетоми С., Тикадзуми С. Магнитные жидкости. – М.: Мир, 1993. – 272 с. 

27.        Фабелинский И.Л. Молекулярное рассеяние света. М.: Наука, 1965. – 512 с.

28.        Фетрман В.Е. Магнитные жидкости. – Минск: Вышейшая  школа., 1988. – 184 с.

29.        Физическая энциклопедия / Гл. ред. А.М. Прохоров. – М.: Сов. энциклопедия. – Т.2. 1990. – С. 673 – 675.

30.        Фролов Ю.Г. Курс коллоидной химии. – М.: Химия, 1982. – 400 с.

31.        Цеберс А.О. Образование  и  свойства  крупных  конгломератов магнитных частиц // Магнитная гидродинамика. – 1983. - №3. – С.   3 – 11.

32.        Цеберс А.О. Термодинамическая устойчивость магнитных жидкостей // Магнитная гидродинамика. – 1982. - №2. – C. 42 – 48.

33.        Цеберс А.О. К вопросу о причинах образования микрокапельных агрегатов в коллоидных системах ферромагнетиков // Магнитная гидродинамика. – 1987 . - № 3. – C. 143-145.

34.        Чеканов В.В. Возникновение агрегатов как фазовый переход в магнитных коллоидах /В кн.: физические свойства магнитных жидкостей. – Свердловск. – 1983. – C. 42 – 49.

35.        Шлиомис М.И. Магнитные жидкости //Успехи физических наук. – 1974. – Т. 112. – С. 427 – 458.

36.        Эскин В.Е. Рассеяние света растворами полимеров и свойства макромолекул. – Л.: Наука, 1986, 288 с.

37.        Bean C.P., Livingston I.D.  Superparamagnetism  // J. Appl. Phys. – 1959. – V. 30S  №4. – P. 120S – 129S.

38.        Berkowitz, Zahut J.A., Van Buren C.E. Properties of magnetic fluid particles. //Transactions of Magnetic – 1980. V. 16. №2. – P. 184 – 190.

39.        Brown W.E. Magnetic interactions of superparamagnetic particles // J. Appl. Phys. – 1967. – V. 38, №3. – P. 1017 – 1018.

40.        Brown W.F. Themal fluctuations of a single-domain particle //Phys. Rex. – 1963. – V. 130. №5. – P. 1677 – 1686.

41.        Chikazumi S., Taketomi S., Ukita M., Mizukami M., Miyajima Н., Setogawa M., Kurihara Y. Physics of magnetic fluids // Journal of Magnetism and Magnetic Materials. – 1987. – V. 65. – P. 245-251.

42.        Hayes C.K. Observation of association a ferromagnetic colloid // Journal of Colloid and Interface Science. – 1975. – V. 52, №2. – P. 239-243.

43.        Jordan P.C. Field dependent chain formation by ferromagnetic colloids // Molecular Physics. – 1979. – V. 38. №3. – p. 769 – 780.

44.        Martinet Т.A. Birefrigence at dichroisme lineaire des ferrofluids sous champ magnetique // Rheologiec Acta. – 1974. – V. 52. №3. – P. 260 – 264.

45.        R.V. Mehta Scattering and polarization of light by magnetic fluids // IEEE. Transaction on Magnetic. – 1980. – V. – MAG-16. №2. – P. 203-206.

46.        Neel Z. Influence des fluctuations thermiques sur l’aimantation de grains ferromagnetiques tres fins. //Acad des sciences. Complet rendu. – 1949. – V. 228, №8, - Р. 664 – 666.

47.        Neel Z. Theoric du triage magnetique ferromagnetiques on grains fins avec application soux terres  cuites // Ann. Geophys. – 1949. V. 5. №2. – P. 99 – 120.

48.        Neitzel U.,Barner K. Optical measurement on ferromagnetic colloids // Physics letters. – 1977. – V.63, №3. – P.327-329.

49.        Sano K., Doi M. Theory of agglomeration of ferromagnetic particles in magnetic fluids //J. Phys. Soc. Jap. – 1983. – V. 52. №8. – P. 2810 – 2815

50.        Scholten P.C. The origin of magnetic birefringence and dichroism in magnetic fluids // IEEE Translations Magnetics Vol Mag-16, 1980, №2, P. 221-225.

51.        Taketomi S., Takahashi H., Inaba N., Miyajim H. Experimental and Theoretical Investigations on Agglomeration of Magnetic Colloid Particles in Magnetic fluids // Journal of the Physical Particles in Magnetic fluids // Journal of the Physical Society of Japan. – 1991. V. 60, №5. – P. 1689-1707.

52.        Wayen Reed, Janson H. Fendler. Anisotropic aggregates as the origin of magnetically induced dichroism in ferrofluids // J. Appl. Phys. 59(8), 15 April 1986, P. 2914 – 2924.


Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.