рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Проектирование адиабатной выпарной установки термического обессоливания воды



3.2.4.10.3 Высота перегородки в третьей камере испарения составит HA3


HA3=0,75´Hc3=0,75´0,717=0,538 м.


3.2.4.10.4 Скорость истечения рассола из третьей ступени в четвёртую из уравнения неразрывности w3



3.2.4.10.5 Высота столба жидкости в четвёртой камере испарения Hс4 по формуле (7-44) [27]


где r4=975,71 кг/м3 – плотность рассола при температуре в четвёртой ступени по таблице 2-1 [7].

3.2.4.10.6 Высота перегородки в четвёртой камере испарения составит HA4


HA4=0,75´Hc4=0,75´0,875=0,656 м.


3.2.4.10.7 Скорость истечения рассола из четвёртой ступени в пятую из уравнения неразрывности w4



3.2.4.10.8 Высота столба жидкости в пятой камере испарения Hс5 по формуле (7-44) [27]



где r5=979,54 кг/м3 – плотность рассола при температуре в пятой ступени по таблице 2-1 [18].

3.2.4.10.9 Высота перегородки в пятой камере испарения составит HA5


HA5=0,75´Hc5=0,75´1,056=0,792 м.


3.2.4.10.10 Скорость истечения рассола из пятой ступени в шестую из уравнения неразрывности w5


3.2.4.10.11 Высота столба жидкости в шестой камере испарения Hс6 по формуле (7-44) [27]



где r6=983,19 кг/м3 – плотность рассола при температуре в шестой ступени по таблице 2-1 [18].

3.2.4.10.12 Высота перегородки в шестой камере испарения составит HA6


HA6=0,75´Hc6=0,75´1,260=0,945 м.



3.2.4.10.13 Скорость истечения рассола из шестой ступени в седьмую из уравнения неразрывности w6



3.2.4.10.14 Высота столба жидкости в седьмой камере испарения Hс7 по формуле (7-44) [27]


где r7=986,46 кг/м3 – плотность рассола при температуре в седьмой ступени по таблице 2-1 [7].

3.2.4.10.15 Высота перегородки в седьмой камере испарения составит HA7


HA7=0,75´Hc6=0,75´1,487=1,115 м.


3.2.4.10.16 Скорость истечения рассола из седьмой ступени в восьмую из уравнения неразрывности w7



3.2.4.10.17 Высота столба жидкости в восьмой камере испарения Hс8 по формуле (7-44) [27]



где r8=989,55 кг/м3 – плотность рассола при температуре в восьмой ступени по таблице 2-1 [18].

3.2.4.10.18 Высота перегородки в восьмой камере испарения составит HA8


HA8=0,75´Hc8=0,75´1,736=1,302 м.


3.2.4.10.19 Скорость истечения рассола из восьмой ступени в девятую из уравнения неразрывности w8


3.2.4.10.17 Высота столба жидкости в девятой камере испарения Hс9 по формуле (7-44) [Таубман]



где r9=992,26 кг/м3 – плотность рассола при температуре в девятой ступени по таблице 2-1 [7].

3.2.4.10.18 Высота перегородки в девятой камере испарения составит HA9


HA9=0,75´Hc9=0,75´2,008=1,506 м.


3.2.5 Из приведённых расчётов видно, что выбранный тип перепускного устройства обеспечивает частичное гашение существующего перепада давлений между ступенями. Уровень испаряемого рассола в камерах равномерно повышается с Hс1=0,50 м до Hс9=2,008 м.

Гасить напор между ступенями полностью нельзя, так как в низкотемпературных ступенях трудно обеспечить свободное истечение рассола. В этом случае движущая сила процесса парообразования будет значительно ниже.

3.3 Компоновка и основные размеры установки


3.3.1 По известной площади зеркала испарения ступеней fS=28 м2 и стандартной длины труб принимаем геометрические размеры одной камеры испарения равными:

- длина L= 4,6м;

- ширина B= 6 м.

3.3.2 Высоту одной ступени находим из расчёта высоты сепарационного пространства не менее одного метра [20]

3.3.2.1 Наибольшая высота трубного пучка составляет Hтр9=3,545 м.

3.3.2.2 Наибольшая высота уровня рассола в камере испарения Hс9=2,008 м.

3.3.2.3 Конструктивно принимаем высоту пространства от поверхности испарения до поддона сбора дистиллята h=0,8 м, высоту сепарационного пространства H0=1,5 м.

3.3.2.4 Расстояние от нижней точки трубного пучка до поддона сбора дистиллята принимаем равным hр= 0,2 м, толщину листа материала поддона hст=0,003м=3 мм.

3.3.2.5 Величину пространства над трубным пучком конденсатора принимаем равным hп=0,5 м.

3.3.2.6. Тогда необходимая высота ступени составит H


H=Hтр9+Hс9+H0+h+hп+hр+hст=3,545+2,008+0,8+0,2+0,003+0,5=7,056 м,


принимаем высоту одной камеры испарения H=7 м.

3.3.3 Из полученных результатов можно сделать вывод, что обеспечивая необходимую высоту сепарационного пространства в девятой ступени, она будет обеспечиваться и в остальных ступенях, где уровень жидкости меньше.

3.3.4 Камеры соединяются друг с другом перепускными устройствами и располагаются последовательно в одном корпусе, конденсаторы располагаются поперёк хода рассола.

3.3.5 Корпус камер испарения выполняется из листовой стали Ст.3, толщиной 10 мм. Жесткость обеспечивается каркасом из металлопроката.

3.3.6 Согласно конструкции, общая площадь камеры испарения в верхней части делится на две части: одну часть занимает сепарационное устройство, другую – трубный пучок конденсатора и поддон отвода дистиллята. В связи с этим принимаем ширину трубного пучка равную Bтр=4 м, длину Lтр=6 м.

(3.63)

 
3.3.7 Площадь сечения сепарационного устройства ступени составит Fсеп.

Fcеп=Bc´L=0,6´6=3,6 м2,

где Bc=0,6 м – ширина сепарационного устройства, принятая по величине свободного парового пространства камер испарения.

3.3.8 Выполним проверку выбранной площади сепарационного устройства первой ступени испарения по допустимой скорости пара найденной ранее


3.3.8.1 По величине принятого критерия устанавливаемого сепаратора N=0,4 найдём отношение свободного сечения сепаратора на входе к его общей площади Fс по формуле (5-16) [20]



где аж=1,14 – постоянная (стр. 194 [7]);

a=450 – угол наклона жалюзи в поперечном разрезе;

m=304,1´10-6 Па´с – динамическая вязкость воды при температуре в первой ступени;

m20=1003´10-6 Па´с – динамическая вязкость воды при температуре 20 0С;

b’=0 – угол наклона жалюзийного пакета.

3.3.8.2 Площадь свободного сечения сепаратора составляет Fс.своб.


Fс.своб.=Fc´Fcеп=0,48´3,6=1,78м2.


3.3.8.3 Скорость вторичного пара в сепарационном устройстве первой, наиболее напряжённой, ступени по уравнению неразрывности составит wс1



3.3.8.4 Сравнивая найденную скорость пара с предельной величиной: wд1’=28,6 м/с больше wc1=28,2 м/с;

следовательно, выбранное сепарационное устройство обеспечит необходимую степень очистки пара принятую ранее.


3.4 Расчёт основных параметров пароструйного эжектора


3.4.1Как уже отмечалось выше, для повышения потенциала используемого в установке пара с низкими параметрами устанавливается пароструйный эжектор. Принимаем в качестве рабочего пар 40 с параметрами P=4,0 МПа и t=375 оС. Схема пароструйного эжектора представлена на рисунке 10.


A – рабочее сопло; B – приемная камера; C – камера смешения; D - диффузор

Рисунок 10 - Схема пароструйного эжектора.


3.4.2 Исходные данные для расчёта

3.4.2.1 Температура рабочего пара tр=375оC.

3.4.2.2 Давление рабочего пара Рр=4,0 МПа.

3.4.2.3 Температура эжектируемого пара tн=70оС.

3.4.2.4 Давление эжектируемого пара Pн=3,1161´104 Па.

3.4.2.5 Температура смеси на выходе tс=101оС.

3.4.2.6 Давление смеси на выходе Рс=0,0981МПа=1ата.

3.4.2.7 Коэффициент эжекции u=9.


3.4.3 По таблице 4-1 [23] для перегретого пара найдем показатель адиабаты рабочего пара kр=1,3.

3.4.4 Газовая постоянная для водяного пара R=463 Дж/кг (таблица 1-2 [23]).


3.4.5 Определим величину относительного давления Прн

3.4.6 Определим по таблице приложения 4 [23] газодинамические функции рабочего пара с учётом найденной величины Прн

3.4.6.1 Приведённая изоинтропная скорость lрн=2,41.

3.4.6.2 Относительная плотность eрн=0,02288.

3.4.6.3 Приведённая массовая скорость qрн=0,0831.


3.4.7 Определяем отношение uc/uр и uн/uр



где uр=0,06997 м3/кг, uн=5,0479 м3/кг, uс=1,735 м3/кг – удельный объём соответственно рабочего пара, инжектируемого пара и смеси.

3.4.8 Определим оптимальное отношение сечения f3 к критическому сечению сопла fр* по формуле (4-20) [23]



3.4.8.1 Вычислим параметр а


где j1=0,95 и j2=0,975 – коэффициенты скорости газоструйного эжектора (стр. 151 [23]).



3.4.8.2 Вычислим параметр b

где j3=0,9 и j4=0,925 - коэффициенты скорости газоструйного эжектора (стр. 151 [17]).

3.4.8.3 Параметр с



3.4.8.4 Тогда отношение (f3/fр*)опт



3.4.9 Вычислим давление смешанного потока в выходном сечении камеры смешения Р3


3.4.9.1 По формуле (4-39) определим перепад давлений инжектируемого потока на входном участке камеры смешения DРк/Рн



где eр*=0,628 и Пр*=0,55 – критическое значение относительной плотности и критическое относительное давление при заданном показателе адиабаты рабочего потока.

3.4.9.2 По формуле (4-43) определим отношение перепада давлений смешанного потока в диффузоре и перепада давлений инжектируемого потока на входном участке камеры смешения DРд/DРк


3.4.9.3 Отношение DРд/Рн



3.4.9.4 Отношение давления смешанного потока к давлению эжектируемого пара по формуле на странице 161 [17]

3.4.9.4 Тогда давление смешанного потока в выходном сечении камеры смешения Р3


Р3=Рн´3,6=3,6´31161=112180 Па=112,18кПа.


3.4.10 Рассчитываем характеристику выбранного эжектора

3.4.10.1 Предварительно находим отношение fр1/f3




3.4.10.2 Отношение fр*2/f3´fн2



3.4.11 Произведём расчёт основных размеров эжектора

3.4.11.1 По формуле (1-20) найдём критическую скорость рабочего потока ар*



где Тр=648 К – абсолютная температура рабочего пара.

3.4.11.2 Критическое сечение рабочего сопла по формуле (2-42) fр*



3.4.11.3 Критический диаметр dр*



3.4.11.4 Выходное сечение сопла fр1



3.4.11.5 Выходной диаметр сопла d1



3.4.11.6 Площадь сечения камеры смешения f3


3.4.11.7 Диаметр камеры смешения d3



3.4.11.8 Длина свободной струи по формуле (2-55) lс1



где а=0,08 – опытная константа для упругих сред (стр.50 [23]).

3.4.11.9 Диаметр свободной струи d4 на расстоянии lс1 от выходного сечения сопла по формуле (2-56)


d4=1,55´d1´(1+u)=1,55´41´10-3´(1+9)=0,636 м=636мм.


3.4.11.10 Так как d4=363 мм>d3=254 мм, то входной участок камеры смешения выполняется в виде конического перехода, на котором диаметр изменяется от 363 мм до 254 мм.

3.4.11.11 При угле раствора 900 длина входного участка камеры смешения lс2


lс2=d4-d3=(363-254)´10-3=0,109 м=109 мм.


3.4.11.12 Расстояние от выходного сечения рабочего сопла до входного сечения цилиндрической камеры смешения lc


lc=lс1+lс2=1,091+0,109=1,2 м=1200 мм.


3.4.11.13 Длина цилиндрической камеры смешения по формуле (2-60) lk

lk=6´d3=6´0,254=1,524 м.


3.4.11.14 Выходное сечение диффузора fс определяется по формуле (2-62)



3.4.11.15 Диаметр выходного сечения dс принимаем Dс=1,400 мм.



3.4.11.16 Определим длину диффузора lд исходя из угла раствора 8-100 по формуле (2-61)


Lд=5´(dс–d3)=5´(1,400-0,254)=7,00 м.


3.4.12 Диаметр трубопровода рабочего пара Dр определим исходя из рекомендуемой скорости движения wр=50 м/с принимаем Dр=100 мм.



3.5 Выбор насосов


3.5.1 Насос циркуляционной воды выбираем по производительности, учитывая, что сопротивление водяного тракта установки не превышает 1,5 кг/м3

Qц=G´3600´uк=1950,5´3600´0,0010078=7077 м3/час,


где uк=0,0010078 м3/кг – удельный объём рассола при температуре на выходе из последней ступени tк=40 оС.

3.5.2 Насос конденсата греющего пара выбираем также по производительности, предполагая, что весь пар, подаваемый в головной подогреватель, конденсируется


Qк=Gг.п.´3600´uк.г.п.=52,45´3600´0,0010437=197,07 м3/час,


где uк.г.п.=0,0010437 м3/кг – удельный объём конденсата.

3.5.3 Вакуум-насос конденсатора теплоиспользующих ступеней выбираем по величине необходимого вакуума в ступенях меньше Рабс. =20 кПа.

3.5.4 Вакуум-насос конденсата теплоотводящих ступеней выбираем аналогично, предполагая вакуум в теплоотводящих ступенях более глубоким Рабс.=6 кПа.

3.5.5 Насос обессоленной воды выбирается по производительности и необходимому напору для передачи воды в заводскую сеть Q=750 м3/час.

3.3.6 Полный перечень насосов, используемых в установке представлен в таблице 6.


Таблица 6 – Тип и количество устанавливаемых насосов

Назначение

Тип насоса

Производительность Q, м/час

Напор Н, м

Частота вращения n, 1/мин

Мощность N, кВт

К.П.Д.

Количество

1 Циркуляционный насос

Д2500-45

2500

45

730

350

0,87

3

2 Насос обессоленной воды

КсВ-1000-95

1000

95

1000

342

0,76

1

3 Насос конденсата греющего пара

КсВ-200-130

200

130

1500

100

0,75

1

4 Насос исходной воды

Д1250-65

1250

65

1450

260

0,86

1

5 Вакуум-насос теплоисполь зующих ступеней

ВВН1-12

360

Рабс.=3,07кПа

1500

12,5

0,75

2

6 Вакуум-насос теплоотводящих ступеней

ВВН1-25

1500

Рабс.=2кПа

1500

20

0,75

1


4. Электротехническая часть

4.1 Общая характеристика


Проектируемая выпарная установка включает следующее основное электрооборудование:

-                     электродвигатели приводов насосного оборудования;

-                     систему освещения.

Необходимо также учитывать возможность подключения различного низковольтного оборудования (электроинструментов, сварочных трансформаторов). Кроме того, всё электрооборудование, кабельные линии и провода оборудуются необходимой защитой и автоматикой.

Линейная схема электрооборудования проектируемой адиабатной выпарной установки представлена на рисунке 11.

Питание проектируемой установки осуществляется от шин напряжением 6 кВ, расположенных на эстакаде производства “Аммиак - 2”, по силовому кабелю, проложенному в земле. Непосредственно на территории установки располагается распределительный шкаф РШ 6 кВ типа К-2-АЭ с вакуумными выключателями типа ВВ/ТЕL, от которого питается высоковольтное оборудование. Двигатели на 380 В, система освещения и внутреннее низковольтное оборудование питается от силового трансформатора через распределительный шкаф РШ 0,4 кВ. Резервного источника питания не предусматривается.

В данном разделе дипломного проекта производится выбор основного электротехнического оборудования, кабелей, проводов, выключателей, автоматов и пр. Здесь же проводится проверка выбранного оборудования и токопроводов.

4.2 Выбор электродвигателей


4.2.1 Электродвигатели привода насосного оборудования выбираем по номинальной мощности насоса, его К.П.Д. и коэффициента запаса по формуле 2.5 [11] с учётом необходимой частоты вращения

4.2.1.1 Мощность электродвигателя привода циркуляционного насоса Рц



где N=350 кВт – мощность насоса согласно таблице 6;

h=0,87 – К.П.Д. насоса по таблице 6;

к=1,1 – коэффициент запаса согласно [11];

выбираем электродвигатель АВ-450-750 номинальной мощностью Рном=450 кВт, напряжением U=6 кВ, частота вращения n=750 об/мин, h=0,97, соsj=0,91.

4.2.2 Мощность электродвигателя привода насоса обессоленной воды Ро



где N=342 кВт – мощность насоса согласно таблице 6;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.