рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Трибология лыжных гонок

Тестирование мази/структуры

Тестирование мази не так уж и важно: все современные марки мазей хорошего качества, и если вы читаете этикетки, у вас есть термометр для воздуха и термометр для снега, и даже гигрометр, то вы вряд ли сильно ошибетесь.

Если вы хотите протестировать мазь или структуру, то используйте тест на длину выката или тест на "соревновательное" скольжение, но при этом обязательно исключите переменные. Убедитесь, что лыжня хорошая, и что вы выкатываетесь на равнину: если после спуска вы будете натыкаться на подъем, заметить какую-либо значительную разницу в скольжении будет очень сложно.

Не пытайтесь тестировать незначительные изменения в смазке или одновременно большое количество мазей. Проводите тесты между марками или между целыми цветами мазей (в противоположность смесям). Старайтесь усилить различия до такой степени, чтобы они стали выразительными.

Старайтесь не тестировать мази на несоответствующих друг другу лыжах. Мне часто приходится видеть, как кто-то тестируют разные мази вначале на паре Fisher, затем на паре Karhu, затем па паре Rossignol, а потом еще и на паре Madshus. Что покажут результаты в таком случае? Какая жесткость была лучше? Какая структура была лучше? Или может быть материал какой скользящей поверхности был быстрее? Шансы распознать таким образом самую лучшую мазь близки нулю. Мораль? Будьте последовательны, планируйте свои действия и тестируйте только одну вещь за раз. Исключайте переменные, и будьте проще!

Одно последнее замечание: Когда будете тестировать мази, обязательно пронумеруйте лыжи и запишите, какая мазь нанесена на каждую из них! Наклейте на носки лыж кусочки изоленты, напишите на них номера лыж маркером, и все записывайте.

Подбор лыж

Учитесь подбирать лыжи, полагаясь на свои ощущения: среди лыжников международного уровня распространено полное игнорирование радаров скорости - они подбирают свои лыжи, основываясь на их реальных эксплуатационных качествах. Для соревнований лучше выбирать лыжи, которые работают на вас на подъемах, чем те, которые, возможно, показали себя чуть быстрее на спусках. Многие успешные лыжники скорее побегут гонку на лыжах, которые могли быть только третьими при тестировании с радаром скорости, но на подъемах вели себя лучше. И опять же, не забывайте, что около 70% времени вы затрачиваете на подъемы.

Тестирование для определения самой лучшей пары классических лыж отличается от тестирования для определения самой лучшей пары коньковых лыж:

Классические лыжи. Смажьте по одной лыже от каждой пары, или смажьте все имеющиеся лыжи - и смажьте их все одинаково. Выйдите и прокатитесь по небольшой петле; обязательно проверьте лыжи на подъеме. Попытайтесь почувствовать скольжение, но, прежде всего, обратите внимание на то, какие лыжи лучше держат. Выберите те лыжи, которые больше всего помогают вам на подъемах.

Коньковые лыжи. Опять же, одинаково смажьте все свои лыжи, затем прокатитесь на них, беря по одной лыже из каждой пары, или поочередно на каждой паре. Наблюдайте за скольжением, но обращайте также внимание на то, как лыжи ведут себя на подъемах, когда вы нагружаете их своим весом. Если лыжи помогают вам на подъемах, то именно эти лыжи и следует выбрать.

И наоборот, если они "встают" на подъемах, поищите другие лыжи.

Записывайте все результаты. Ведение записей требует времени и труда, но дает ценную информацию, которая упрощает поиск хороших лыж.



3.4.6. Передовые методы тестирования скольжения

Самое тщательное тестирование начинается с калибровки тестовых лыж, смазанных одной и той же мазью. После калибровки все пары лыж смазываются по-разному, при этом одна из них ("нулевая пара") смазывается точно также как при калибровке. Затем лыжи тестируются снова.

Место тестирования должно быть тихим (безветренным; даже легкий ветерок затруднит тестирование). Сделайте как минимум шесть тестовых спусков на каждой паре лыж. Средние показатели: скорости/времени будут являться основным результатом возможных различий, среднее отклонение будет показывать погрешность тестирующего лыжника и погодных условий (ветра), а тенденция будет указывать на изменения в лыжне. (При температуре около 0°C, сдвиги в результатах, вызванные изменениями в состоянии лыжни, могут быть очень сильными).

В целом весь тест может включать до шестидесяти спусков — довольно большая работа, но, тем не менее, дающая достаточно достоверные результаты. Значимыми являются расхождения в результатах свыше 1% от среднего показателя нулевой пары. Если расхождения во время калибровки и во время тестирования мазей составляют менее 1%, можно предположить, что разницы между мазями нет.

Иногда при первом тестовом спуске лыжи едут быстро, но после становятся медленнее. Причиной этому могут быть грязь, вода, или же твердые кристаллы льда, которые истирают скользящую поверхность и мазь. Пока скользящая поверхность гладкая, она скользит хорошо, но с появлением все большего количества "царапин", от спуска к спуску, лыжи становятся медленнее. В таких условиях нужно обращать внимание на изменения в тенденции результатов, чтобы иметь информацию о состоянии мази.

Человеческий фактор имеет большое значение. Если одни и те же лыжи тестирует сразу несколько лыжников, есть риск получить запутанные результаты. Каждый лыжник имеет свой "подход" к лыжами. Даже небольшие изменения в весе или равновесии могут привести к изменениям в распределении давления лыж. Выполняйте тестирования только с одним лыжником.

Извечный вопрос: какое тестирование лучше - субъективное или объективное? Старайтесь выявлять явные различия между лыжами, используя объективные тесты, а небольшие - "на ощупь" - с помощью субъективного теста.

При тестировании держащей мази больше обращайте внимание на хорошее держание, нежели на скольжение.

Скольжение и держание на классических лыжах является скорее вопросом прогиба, чем самой мази. Даже если производители мазей и утверждают, что скольжение держащей мази очень важно, не стоит придавать этому большого значения. Вместо этого лучше помнить о том, что назначение держащей мази - держать, а не скользить. Скольжение зависит от других вещей (мази скольжения, распределения давления).

Всё это, конечно, в идеале. В условиях же соревнований процедуры должны быть упрощенны. Но даже в этом случае, не следует брать в расчет расхождения менее чем в 1 %.

3.4.7. Другие методы

Некоторые лыжные команды, в особенности итальянские, тестируют лыжи, устанавливая подряд сразу несколько радаров скорости. Это позволяет им тестировать степень ускорения лыж.

Несколько лет назад велись работы по использованию маленького ролика или гребного колесика, закрепленного на пяточной части лыжи. Эта конструкция соединялась с небольшим компьютером, регистрирующим скорость и степень ускорения лыжи, которые в последствии можно было вывести в виде графика. Эта прекрасная идея не получила своего развития, однако представлялась и до сих пор представляется исключительно полезной.

Наши российские специалисты придумали так называемую "взбивалку для яиц" небольшую машинку с вращающимися полиэтиленовыми (Р-Тех) дисками. Вращающийся диск прикладывается к снегу и измеряется сопротивление. Это приспособление позволяет технику за короткое время, и с регистрацией всех данных, протестировать столько мазей, сколько у него есть в наличии дисков. Оно также позволяет технику за короткий срок протестировать мази в разных местах (в верхней точке, в нижней точке и т.д.).

Велись также некоторые работы над приспособлением, которое тащило лыжу вдоль лыжни и измеряло сопротивление.

Все эти методы являются попытками собрать объективные и удобные для записи данные простым и легко выполнимым способом. При этом весьма желательно исключение погрешностей, связанных с самим лыжником (неравномерная загрузка лыж, сопротивление воздуха и т.д.).


Мы разобрались, почему лыжи «катят», а иногда не нет, какие парафины использовать и что нужно иметь для подготовки лыж.  Теперь перейдем непосредственно к опыту.


4. Экспериментальное изучение коэффициента трения.


4.1. Физические основы теста на длину выката.


Рассмотрим динамику и кинематику наиболее распространенного и самого простого метода тестирования лыж, когда вы скатываетесь со склона из общей начальной точки, и смотрите, какие лыжи уезжают дальше – тест на длину выката (см. Рис. 4.1).



Теста на длину выката.

Рис. 4.1


Лыжник стартует без начальной скорости VНР = 0 с вершины ровной горы высотой H, составляющей некоторый угол a с горизонталью, и за время проезжает по склону расстояние , постоянно разгоняясь до скорости .  

Затем в течение времени лыжник движется по горизонтальной поверхности и на некотором расстоянии от окончания склона он остановится VКТ = 0.


При этом можно принять следующие допущения: коэффициент трения о снег m постоянен; сопротивления воздуха отсутствует; переход от наклонного участка к горизонтальному происходит без удара.


Требуется определить абсолютную величину коэффициент трения о снег m и относительную эффективность  скольжения тех лыж, которые за счет лучшей смазки (меньшего коэффициента трения m¢) позволяют лыжнику увеличить длину выката на некоторую величину DL .


Прежде всего, решим поставленную задачу исходя из законов Ньютона и формул равноускоренного движения.


На первом (наклонном) участке равноускоренного движения лыжника (с ускорением ар) введем плоскую декартову систему координат с осями:

ХР – направленную по ходу движения лыжника (под углом a к горизонту) ;

– направленную перпендикулярно склону,

и запишем второй закон Ньютона относительно этих осей (сумма проекций всех сил действующих вдоль некоторой оси равна массе тела умноженной на проекцию ускорения вдоль данной оси):

                                                                                                         (4.1)

                                                                                                                (4.2)


Раскроем левые части выражений (4.1) и (4.2) при условии, что сопротивления воздуха осутствует

                                                                                   (4.3)

                                                                                                          (4.4)


Получив из (4.4), что , и подставив значение силы реакции опоры на наклонном участке в  (4.3) запишем

                                                                                  (4.5)

Учтем, что из геометрических соотношений (см. Рис. 4.1)

, а .

Приняв во внимание, что при малых углах a отношение , а , из (4.5) получим

.                                                                                                     (4.6)


Стартуя без начальной скорости и двигаясь равноускоренно (с ускорением ар) лыжник к концу наклонного участка достигнет скорости равной


,                                                                                                             (4.7)

затратив на это время

,                                                                                                                  (4.8)

и пройдя путь

.                                                           (4.9)

С учетом (4.6), последнее выражение можно переписать относительно V2P

                                                                              (4.10)

На втором (горизонтальном) участке равнозамедленного движения лыжника (с ускорением аТ) введем плоскую декартову систему координат с осями:

ХТ – направленную по ходу движения лыжника (горизонтально) ;

– направленную перпендикулярно первой,

и аналогично (4.1) и (4.2) запишем второй закон Ньютона относительно этих осей

                                                                                                        (4.11)

                                                                                                                (4.12)


Раскроем левые части выражений (4.11) и (4.12) при условии, что нет сопротивления воздуха

                                                                                                    (4.13)

                                                                                                         (4.14)


Приняв из (4.14), что , и подставив значение силы реакции опоры на горизонтальном участке в        (4.13) запишем

            ,                                                                                                 (4.15)

получив аналогично (4.6)

.                                                                                                                (4.16)

При условии, что переход от наклонного участка к горизонтальному происходит без удара, а скорость лыжника в момент начала торможения равна его скорости в конце окончания разгона

                                                                                   (4.17)

получим, что на выкатывание по горизонтальному участку он затратит время

,                                                                                                                   (4.18)

и пройдет путь

.                                                                                                 (4.19)


С учетом (4.16), последнее выражение можно переписать относительно V2P

                                                                                       (4.20)


Поскольку в соотношениях (4.10) и (4.20) равны левые части, то, приравняв правые части этих выражений, получим

,

что при обозначении общего пути пройденного лыжником  через , даст следующую простую формулу для абсолютного значения коэффициент трения о снег m


.                                                                                                  (4.21)


Как уже было отмечено, данное решение найдено из законов Ньютона и формул равноускоренного движения. Однако, использование теоремы о кинетической энергии позволяет получить ответ гораздо быстрее.

Кинетической энергией материальной точки называется половина произведения ее массы на квадрат скорости.


Известно, что в случае произвольного движения может быть доказана важнейшая теорема классической механики: Изменение кинетической энергии тела равно работе всех сил, действующих на тело на рассматриваемом участке траектории.


Применительно к решаемой нами задаче данную теорему можно записать в виде:

,                                                                       (4.22)

где  – кинетическая энергия лыжника (начала разгона), стартующего без начальной скорости VНР = 0 с вершины горы;

 – кинетическая энергия лыжника (конца торможения), в момент его остановки VКТ = 0 на некотором расстоянии от окончания склона;

 - соответственно работа силы тяжести, силы трения и силы реакции опоры.


Поскольку как на участке разгона, так и на участке торможения сила реакции опоры N перпендикулярна вектору перемещения лыжника, работа этой силы равна нулю

.                                                                                                                    (4.23)


Величина силы трения на наклонном и горизонтальном участках равна соответственно и . Приняв во внимание, что вектор силы трения всегда противоположен вектору перемещения лыжника, работа этой силы будет отрицательной и равной

.                                                               (4.24)


В направлении силы тяжести лыжник совершит перемещение на величину Н (высота горы), поэтому работа данной силы будет положительной и равной

.                                                                                                       (4.25)


Подставим все найденные выражения (4.23), (4.24) и (4.25) в (4.22)


.


Приняв во внимание, что при малых углах , мы получим

,

что и даст нам окончательное выражение для абсолютного значения коэффициент трения о снег m, полностью совпадающее с ранее полученной зависимостью (4.21)


.

Используя полученную формулу для расчета абсолютной величины коэффициента трения о снег m, можно легко найти относительную эффективность  смазки тех лыж, которые позволяют спортсмену за счет меньшего коэффициента трения m¢ увеличить длину выката на некоторую величину DL=L¢-L:

.               (4.26)


4.2. Методика проведения опытов.

Из полученных нами формул для определения абсолютного значения коэффициента трения о снег m (4.21) и относительную эффективность  смазки лыж (4.26) видно, что при проведении опытов достаточно определять только линейные размеры, такие как:

L (L¢)- общий путь лыжника;

 Н – высоту горки, с которой он стартует.

Однако, если для измерения общего L пути достаточно шагами промерять расстояние от точки начала разгона до точки торможения, то для определения высоты Н в обычных условиях у лыжника нет никаких средств измерений (таких как нивелиры, уровни и т.д.).

При этом можно исходить из того, что в распоряжении спортсмена вполне может быть секундомер (или электронные наручные часы), и, следовательно, у него есть возможность замерять хотя бы интервал времени от момента начала разгона до полного торможения .

Для того, что бы получить формулу для определения абсолютного значения коэффициента трения о снег m, в которой вместо величины Н (высоты горки), фигурировал бы общий интервал времени t.

Еще раз вернемся к найденным нами зависимостям (4.6) и (4.16), с учетом (4.9), (4.19) и (4.21) запишем:

,                                                                                                                 (4.27)

,                             (4.28)

,                                                                                                             (4.29)

,                                                                                                                 (4.30)

,                                                                                                                 (4.31)

,                                            (4.32)

.                                                     (4.33)

Окончательно найденная нами формула (4.33), для экспериментального определения абсолютного значения коэффициента трения о снег m, позволяет сформировать следующую методику проведения опытов и обработки полученных результатов:

первый этап – спортсмен на лыжах поднимается в тестовую горку на некоторую высоту и отмечает место своего старта;

второй этап – фиксирует свое положение палками, затем, отпуская их, одновременно с началом разгона включает секундомер и скатывается с горки;

третий этап – в момент окончания скольжения по горизонтальному участку лыжник останавливает секундомер, фиксирует время t и отмечает место, до которого он докатился;

 четвертый этап – спортсмен снимает лыжи и пешком возвращается к месту своего старта, при этом шагами измеряя расстояние от места остановки до окончания склона горы , а затем и общий путь L пройденный им (или отдельно длину разгона );

пятый этап – лыжник записывает опытные значения t, L, и по формуле (4.33) находит абсолютного значения коэффициента трения о снег m.


Понятно, что спортсмена мало интересует абсолютное значения коэффициента трения, поскольку для него гораздо важнее знать величину относительной эффективность  смазки лыж.

Как видно из формулы (4.26) для экспериментального определения d не нужно знать высоту тестовой горки Н и, следовательно, нет необходимости измерять время t

Поэтому при проведении опытов для определения относительной эффективность смазки лыж на втором и третьем этапах нашей методики не требуется использовать секундомер и записывать время.

Однако этапы с первого по четвертый повторяются несколько раз для различных лыж и различных смазок.

Затем на пятом этапе кроме определения длины общего пути L до самого худшего результата (наименьшая длина выката), лыжник ступнями измеряет расстояния от отметки худшего результата до отметок всех остальных тестов DLi и по формуле (4.26) находит di.


4.3. План эксперимента и полученные результаты.

4.3.1. Условия проведения опытов.

Как было отмечено во введении к данной исследовательской работе, задача эксперимента заключалась в определении как абсолютное значение коэффициента трения лыж о снег, так и относительную эффективность различных смазок скольжения в условиях сурового уральского климата:

·        при низких температурах  - от минус 15°С и ниже

·        и высокой влажности воздуха – от 70% до 100%.

Для тестирования были выбраны две следующие смазки скольжения:

·        импортный парафин SWIX HF4, для температур от -10°С до -32°С и высокой влажности воздуха, по цене порядка 1200 руб. за 40 г. (см. Рис. 4.2);

·        и отечественный парафин Луч HF5, для температур от -5°С до -25°С и влажности воздуха от 85-98%, по цене 250 руб. за 50 г. (в пять раз меньшей).


Рис. 4.2

HF означает «High fluorocarbon» – мази с высоким содержанием фторорганики.


В эксперименте использовались две пары лыж FISCHER RCS (топ модель) SkateCut (для конькового хода) Cold (для низких, менее -2°С температур):

первая пара – модель сезона 2003/04, длина 187, stiff (высокой жесткости);

вторая пара - модель сезона 2004/05, длина 192, medium (средней жесткости) (см. Рис. 4.3);


Рис. 4.3.


4.3.2. Первая серия опытов.


Первая серия опытов проводилась 30.01.06 с 19:00 до 21:00 на лыжной базе «СКА» (район Уктуса г. Екатеринбурга) при температуре воздуха -18°С и влажности 78%.

Импортный парафин SWIX HF4 был нанесен на первую пару лыж (модель  2003/04), а отечественная смазка скольжения Луч HF5 -  на вторую пару (модель  2004/05).

Обе пары тестировал один лыжник. Опыты дублировались по три раза для каждой пары. 

В ходе этой первой серии экспериментов использовался спортивный секундомер «CASIO» 311Q04 и  фиксировалось время проведения теста t.

Расстояния L и   измерялись парами шагов, а разность в длине выката DL - размером ступни по лыжному ботинку. При этом пересчет на метры производился по следующим соотношениям:

·        1 ступня = 0,3 м;

·        1 пара шагов = 6 ступней = 6*0,3 = 1,8 м.

Результаты опытов и рассчитанные значения абсолютных значений коэффициентов трения лыж о снег и относительной эффективности парафина SWIX HF4 по сравнению с Луч HF5 приведены в Табл. 4.1.

Полученные в первой серии опытов абсолютные значений коэффициентов трения лыж о снег (0,04184 - для SWIX HF4 и 0,04218 – для Луч HF5) хорошо согласуются с приведенными на Рис. 2.1 известными значениями, такими как 0,035 для трибологической пары «дерево – лед». Это говорит о принципиальной работоспособности предложенной нами методики.

Однако погрешность в определении абсолютных значений коэффициента трения (3…4%) не приемлема для оценки относительной эффективности смазок, имеющих примерно одинаковые характеристики и отличающихся друг от друга менее чем 1…3%.

Таблица 4.1

Результаты первой серии опытов


Условия тестирования

Единица

измерения

1 пара лыж, 

смазка - SWIX HF4

2 пара лыж,

смазка  - Луч HF5

Номер опыта

i

1.1

1.2

1.3

2.1

2.2

2.3

Времени тестирования t

сек

31,11

31,77

31,72

31,66

31,19

31,33

Разность в длине выката DLij, от наихудшего результата для опыта 2.1, L2.1 = 62 пары шагов = 62*1,8 = 111,6 м

ступней

4,0

2,5

3,0

0,0

1,5

3,0

м

1,20

0,75

0,90

0,00

0,45

0,90

Общая длина участков разгона и выката

Lij= L2.1+DLij

м

112,80

112,35

112,50

111,60

112,05

112,50

Среднее значение общей длины участков разгона и выката

м

112,55

112,05

Относительная погрешность проведения опытов


0,40%

0,80%

Относительная эффективность d парафина SWIX HF4 по сравнению с Луч HF5 по формуле (4.26)

%

0,45%

Длина участка торможения (выката) ij при одинаковой длине участка разгона

LР= 28 пар шагов = 50,4 м,

ij= Lij -

м

62,40

61,95

62,10

61,20

61,65

62,10

Коэффициент трения по формуле (4.33)


0,0430

0,0412

0,0413

0,0414

0,0427

0,0424

Среднее значение коэффициента трения


0,04184

0,04218

Относительная погрешность проведения опытов


3,96%

3,06%

Относительная эффективность парафина SWIX HF4 по сравнению с Луч HF5

%

0,80%


Погрешность в определении эффективности смазки через разность в длине выката по формуле (4.26) существенно меньше (0,4…0,8%), чем через определение абсолютных значений коэффициента трения, однако и она достаточно высока для выявления отличий в работоспособности смазки не превышающих 1% .

Для того, что бы убедиться в значимом различии относительной эффективности парафина SWIX HF4 по сравнению с Луч HF5, нами была проведена вторая серия экспериментов, при планировании которой мы постарались максимально увеличить как количество параллельных опытов, так и условий их проведения.


4.3.3. Вторая серия опытов.

Вторая серия опытов проводилась 01.02.06 с 19:00 до 20:00 так же на лыжной базе «СКА» при температуре воздуха -16°С и влажности 85%.

Импортный парафин SWIX HF4 так же был нанесен на первую пару лыж (модель  2003/04), а отечественная смазка Луч HF5 -  на вторую пару (модель  2004/05).

Обе пары тестировали уже два лыжника (имеющих разную массу) при двух различных длинах участка разгона (с разной высоты тестовой горки). Опыты дублировались по пять раз для каждой пары, каждого лыжника и для каждой длины участка разгона. 

В ходе второй серии экспериментов секундомер не использовался, и время проведения теста  t не фиксировалось, поскольку задача определения абсолютного значения коэффициента трении уже была решена в первой серии.

Расстояние L измерялись, как и в первой серии, парами шагов, а разность в длине выката DL – размером ступни. Пересчет на метры производился по тем же соотношениям, что и в первой серии.

Результаты опытов и рассчитанные значения относительной эффективности парафина SWIX HF4 по сравнению с Луч HF5 приведены в Табл. 4.2. и Табл. 4.3


Таблица 4.2

Результаты второй серии опытов

при длине участка разгона= 50,4 м,


Лыжник

Единица

измерения

А

Б

Условия тестирования

SWIX HF4

Луч HF5

SWIX HF4

Луч HF5

Разность в длине выката DL от наихудшего результата

=  110  м

ступней

1

7,0

0,0

8,0

12,0

2

13,0

0,5

18,0

13,5

3

18,0

15,5

22,0

15,0

4

20,0

18,0

23,0

18,0

5

21,0

18,2

23,5

18,0

м

1

2,1

0,0

2,4

3,6

2

3,9

0,2

5,4

4,1

3

5,4

4,7

6,6

4,5

4

6,0

5,4

6,9

5,4

5

6,3

5,5

7,1

5,4

Общая длина участков разгона и выката L


м

1

112,1

110,0

112,4

113,6

2

113,9

110,2

115,4

114,1

3

115,4

114,7

116,6

114,5

4

116,0

115,4

116,9

115,4

5

116,3

115,5

117,1

115,4

Среднее значение общей длины участков разгона и выката

м


114,7

113,1

115,7

114,6

Относительная погрешность проведения опытов



3,66%

4,83%

4,02%

1,57%

Относительная эффективность d парафина SWIX HF4 по сравнению с Луч HF5 по формуле (4.26)



1,42%

0,94%


Таблица 4.2

Результаты второй серии опытов

при длине участка разгона= 86,4 м,


Лыжник

Единица

измерения

А

Б

Условия тестирования

SWIX HF4

Луч HF5

SWIX HF4

Луч HF5

Разность в длине выката DL от наихудшего результата

=  161  м

ступней

1

10,5

0

19

6,5

2

10,5

3

18

8

3

10,5

6

19

15

4

10,5

9,5

19

17

5

12,5

14

30

25

м

1

3,2

0,0

5,7

2,0

2

3,2

0,9

5,4

2,4

3

3,2

1,8

5,7

4,5

4

3,2

2,9

5,7

5,1

5

3,8

4,2

9,0

7,5

Общая длина участков разгона и выката L


м

1

164,2

161,0

166,7

163,0

2

164,2

161,9

166,4

163,4

3

164,2

162,8

166,7

165,5

4

164,2

163,9

166,7

166,1

5

164,8

165,2

170,0

168,5

Среднее значение общей длины участков разгона и выката

м


164,3

163,0

167,3

165,3

Относительная погрешность проведения опытов



0,37%

2,58%

1,97%

3,36%

Относительная эффективность d парафина SWIX HF4 по сравнению с Луч HF5 по формуле (4.26)



0,81%

1,22%


Результаты второй серии опытов показывают, что погрешность в определении эффективности смазки через разность в длине выката по формуле (4.26), остается на уровне первой серии (0,37…4,83%), что не позволяет с полной уверенность говорить о большей эффективности парафина SWIX HF4 (0,81…1,42%).

Однако поскольку как в первой, так и во второй серии опытов SWIX HF4 в среднем вел себя несколько лучше, что, видимо, вполне можно говорить о его большей эффективности по сравнению с Луч HF5, но на величину не превышающую 0,5%.

Много это, или мало? Можно привести следующие рассуждения. Смазка с эффективностью в 0,5% на дистанции 5 км может условно позволить лыжнику «укатиться» на 5 000 * 0,005 = 25 м дальше. При соревновательной скорости порядка 15км/ч (около 4 м/с) даст выигрыш в 25/4 » 6 сек.

Для спортсменов мировой элиты лыжного спорта и биатлона это, по всей видимости, может и много. Однако для рядовых спортсменов и любителей лыжного спорта это отличие не значимо и поэтому вряд ли стоит тратить в 5 раз большие суммы на подготовку лыж с использованием таких дорогих парафинов, как SWIX HF4. Отечественные смазки типа Луч HF5 могут работать ни чуть не хуже.


Заключение

Решая поставленные в данной работе задачи такие, как изучение основ трибологии, знакомство с видами трения, изучение взаимодействия лыж и снега, удалось разработать достаточно простую методику определения как абсолютного значение коэффициента трения лыж о снег, так и относительной эффективность различных смазок скольжения на  основе наиболее распространенного способа тестирования лыж – по длине выката.

Работоспособность данной методики была экспериментально проверена, и показано, что получаемые              с помощь ее результаты для абсолютных значений коэффициента трения хорошо согласуются с известными величинами для таких трибологических парах, как «дерево – лед».

Экспериментально найденные значения относительной эффективности парафина SWIX HF4 по сравнению с Луч HF5 в условиях сурового уральского климата при низких температурах  и высокой влажности воздуха показывают что, вряд ли стоит тратить в 5 раз большие суммы на подготовку лыж с использованием дорогих импортных парафинов, таких как SWIX HF4.

Отечественные смазки типа Луч HF5 в суровых уральских условиях могут работать ни чуть не хуже.

Основные задачи, поставленные в рамках данной исследовательской работы, выполнены.

Дальнейшим развитием выбранного направления может стать более точное тестирование лыж и смазок с использованием, например, таких современных приборов, как радары скорости.


Использованные источники.


Перышкин А.В. Физика 7 кл.: Учеб. для общеобразоват. учеб. заведений. – 6-е изд., стериотип. – М.: Дрофа, 2002. – 192 с.: ил.

Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. Шк. – 3-е изд. – М.: Просвещение, 1994. – 192 с.: ил.

Перышкин А.В. Физика 9 кл.: Учеб. для общеобразоват. учеб. заведений/ А.В. Перышкин, Е.М. Гутник . – 5-е изд., стериотип. – М.: Дрофа, 2002. – 256 с.: ил.

Касьянов В.А. Физика 10 кл.: Учеб. для общеобразоват. учеб. заведений. – 5-е изд., дораб. – М.: Дрофа, 2003. – 416 с.: ил.

Крагельский И. В., Виноградова И. Э. Коэффициенты трения. Справочное пособие. – 2-е изд. – М.: МАШГИЗ, 1962. – 220 с.: ил.

Слободетский И.Ш. Сухое трение. Журнал «Квант», 1970, №1 с. 37-41.

Нет Браун. Подготовка лыж. Полное руководство. : Пер. с анг. – Немцов А. – Мурманск, 2004. – 168 с. : ил.

Ресурсы Интернет:

http://www.tribo.ru/new/about.html - Журнал "Трение Износ Смазка" основан в 1999 году. Учредитель НПК "ВМПАВТО". Выходит 4 раза в год.

http://www.abitura.com - Сайт для абитуриентов, для выпускников школы, для тех, кто собирается поступать в вузы, где требуется хорошее знание физики.

http://www.krugosvet.ru/about.htm - Энциклопедия «Кругосвет».

http://skisport.narod.ru/index.html  - Беговые лыжи. Детский центр культуры и спорта «Южное Измайлово»

http://xcski.narod.ru/ - Лыжный клуб «Обнинск»

http://www.skisport.ru/ - Официальный сайт журнала «Лыжный спорт»




Страницы: 1, 2, 3, 4, 5


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.