рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Физика, основы теории

Термодинамическая температура Т связана с температурой по шкале Цельсия следующим соотношением:

Т = (t0 + 273)K


Для идеального газа существует пропорциональная зависимость между абсолютной температурой газа и средней кинетической энергией поступательного движения молекул:

,


где k – постоянная Больцмана, k = 1,38· 10 – 23 Дж/К

Таким образом, абсолютная температура является мерой средней кинетической энергии поступательного движения молекул. В этом заключается её физический смысл.

Подставляя в уравнение p = n выражение для средней кинетической энергии

= kT, получим

p = n ·  kT = nkT


Из основного уравнения МКТ идеального газа p = nkT при подстановке


,


можно получить уравнение


, или A · kT

NA· k = R - универсальная газовая постоянная, R = 8,31

Уравнение  называют уравнением состояния идеального газа (уравнением Менделеева-Клапейрона).

15. Газовые законы. Графики изопроцессов.

1.                 Изотермический процесс (Т = const) подчиняется закону Бойля – Мариотта: для данной массы газа при постоянной температуре произведение давления на объём есть величина постоянная.


, или , или


 P






0 V

 Изотерма идеального газа в координатных осях P,V представлена на графике.

2.                 Изобарный процесс (р = const) подчиняется закону Гей-Люссака: для данной массы газа при постоянном давлении отношение объема газа к абсолютной температуре есть величина постоянная.

, или , или

 V






0 T

 Изобара идеального газа в координатных осях V, T представлена на графике.



3.                 Изохорный процесс (V = const) подчиняется закону Шарля: для данной массы газа при постоянном объеме отношение давления газа к абсолютной температуре есть величина постоянная.


, или  или

P






0 T

 Изохора идеального газа в координатных осях P, T изображена на графике.

Внутренняя энергия идеального газа. Способы изменения внутренней энергии.

Количество теплоты. Работа в термодинамике

Внутренней энергией называют сумму кинетической энергии хаотического движения молекул и потенциальной энергии их взаимодействия.

Так как молекулы идеального газа не взаимодействуют друг с другом, то внутренняя энергия U идеального газа равна сумме кинетических энергий хаотически движущихся молекул:


, где .


Таким образом,

,


где .

Для одноатомного газа i = 3, для двухатомного i = 5, для трех (и более)атомного i = 6.

Изменение внутренней энергии идеального газа


.


Внутренняя энергия идеального газа является функцией его состояния. Внутреннюю энергию можно изменить двумя способами:

·                    путем теплообмена;

·                    путем совершения работы.

Процесс изменения внутренней энергии системы без совершения механической работы называют теплообменом или теплопередачей. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Количеством теплоты называют величину, являющуюся количественной мерой изменения внутренней энергии тела в процессе теплопередачи.

Количество теплоты, необходимое для нагревания (или отдаваемое телом при охлаждении) определяется по формуле:


 где с – удельная теплоемкость вещества

 

Работа в термодинамике

Элементарная работа d A = p dV. При p = const

 

16. Состояние системы. Процесс. Первый закон (первое начало) термодинамики


Системой тел называют совокупность рассматриваемых тел. Примером системы может быть жидкость и находящийся в равновесии с ней пар. В частности, система может состоять из одного тела.

Всякая система может находиться в различных состояниях, отличающихся температурой, давлением, объемом и т.д. Величины, характеризующие состояние системы, называют параметрами состояний.

Не всегда какой-либо параметр системы имеет определенное значение. Если, например, температура в разных точках тела неодинакова, то телу нельзя приписать определенное значение температуры. В этом случае состояние системы называют неравновесным.

Равновесным состоянием системы называют такое состояние, при котором все параметры системы имеют определенные значения, остающиеся при неизменных внешних условиях постоянными сколь угодно долго.

Процессом называют переход системы из одного состояния в другое.

Внутренняя энергия является функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Изменение внутренней энергии системы при её переходе из одного состояния в другое (независимо от пути, по которому совершается переход) равно разности значений внутренней энергии в этих состояниях.

Согласно первому началу термодинамики количество теплоты, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Применение первого закона термодинамики к процессам в газах. Адиабатный процесс.

1.                 Изотермический процесс (Т=const)


, т.к. .


Работа газа в изотермическом процессе


.


2.                 Изохорный процесс (V=const)


, так как  Следовательно

3.                 Изобарный процесс (p=const)

.


4.                 Адиабатный процесс (Q = 0).

Адиабатным называют процесс, протекающий без теплообмена с окружающей средой.

Уравнение адиабаты (уравнение Пуассона) имеет вид .

В соответствии с первым законом термодинамики  Следовательно, .

При адиабатном расширении , поэтому  (газ охлаждается).

При адиабатном сжатии , поэтому (газ нагревается). Адиабатное сжатие воздуха применяют для воспламенения топлива в дизельных ДВС.


17. Тепловые двигатели

Под тепловым двигателем понимают устройство, преобразующее энергию сгоревшего топлива в механическую энергию. Тепловой двигатель, у которого рабочие части периодически возвращаются в исходное положение, называют периодическим тепловым двигателем.

К тепловым двигателям относятся:

·                    паровые машины,

·                    двигатели внутреннего сгорания (ДВС),

·                    реактивные двигатели,

·                    паровые и газовые турбины,

·                    холодильные машины.

Для работы периодического теплового двигателя необходимо выполнение следующих условий:

·                    наличие рабочего тела (пара или газа), которое, нагреваясь при сгорании топлива и расширяясь, способно совершить механическую работу;

·                    использование кругового процесса (цикла);

·                    наличие нагревателя и холодильника.

Второе начало термодинамики

Схема теплового двигателя имеет вид, изображенный на рисунке. количество теплоты, полученное рабочим телом от нагревателя, - количество теплоты, отданное рабочим телом холодильнику.

Из схемы видно, что тепловой двигатель совершает работу только за счет передачи теплоты в одном направлении, а именно от более нагретых тел к менее нагретым, причем вся теплота, взятая от нагревателя, не может быть

превращена в механическую работу. Это не случайность, а результат объективных закономерностей, существующих в природе, которые отражены во втором начале термодинамики. Второе начало термодинамики показывает, в каком направлении могут протекать термодинамические процессы, и имеет несколько равнозначных формулировок. В частности, формулировка Кельвина такова: невозможен такой периодический процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.

КПД теплового двигателя. Цикл Карно.

Коэффициентом полезного действия (КПД) теплового двигателя называют величину, равную отношению количества теплоты, превращенной двигателем в механическую работу, к количеству теплоты, полученной от нагревателя:


 

КПД теплового двигателя всегда меньше единицы.

Для определения максимально возможного значения КПД теплового двигателя французский инженер С. Карно рассчитал идеальный обратимый цикл, состоящий из двух изотерм и двух адиабат. Он доказал, что максимальное значение КПД идеальной тепловой машины, работающей без потерь на обратимом цикле


.


Любая реальная тепловая машина, работающая с нагревателем при температуре  и холодильником при температуре  не может иметь КПД, превышающий КПД идеальной тепловой машины с теми же температурами.

 


ЭЛЕКТРОМАГНЕТИЗМ


1. Электризация тел. Закон сохранения электрического заряда. Закон Кулона

Многие частицы и тела способны взаимодействовать между собой с силами, которые, как и силы тяготения пропорциональны квадрату расстояния между ними, но во много раз больше сил тяготения. Этот вид взаимодействия частиц называют электромагнитным.

Принято считать, что элементарные частицы, способные к электромагнитным взаимодействиям, имеют электрический заряд.

Следовательно, электрический заряд есть количественная мера способности частиц к электромагнитным взаимодействиям.

Существует два вида электрических заряда, условно называемых положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные притягиваются.

Экспериментально установлено, что заряд любого тела состоит из целого числа элементарных зарядов, т.е. электрический заряд дискретен. Элементарный заряд обычно обозначают буквой е. Заряд всех элементарных частиц (если он не равен нулю) одинаков по абсолютной величине.


|e| = 1,6·10 –19 Кл

 

Любой заряд, больше элементарного, состоит из целого число элементарных зарядов


q = ± Ne (N = 1, 2, 3, …)



Электризация тел всегда сводится к перераспределению электронов. Если тело имеет избыток электронов, то оно заряжено отрицательно, если - недостаток электронов, то тело заряжено положительно.

В изолированной системе алгебраическая сумма электрических зарядов остается постоянной (закон сохранения электрического заряда):


q1 + q2 +…+ qN = ∑qi = const


Закон, которому подчиняется сила взаимодействия точечных неподвижных зарядов установлен Кулоном (1785 г.)

Точечным зарядом называют заряженное тело, размерами которого можно пренебречь по сравнению с расстояниями от этого тела до других тел, несущих электрический заряд.

Согласно закону Кулона сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

 F = k

|q1| ·|q2|

r2


 k – коэффициент пропорциональности.


В СИ k =

1

4πε0


k = 9·109 Н·м2/Кл2 ε0 = 8,85·10-12 Кл2/Н·м2 (ε0 – электрическая постоянная).


2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей


Электрическое поле – вид материи, посредством которого происходит взаимодействие электрических зарядов.

Силовой характеристикой электрического поля является напряженность электрического поля.

Напряженность электрического поля в данной точке равна отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда.


.


Напряженность электрического поля измеряется в  или в .

Напряженность поля точечного заряда .

Согласно принципу суперпозиции (наложения) полей напряженность поля системы зарядов равна векторной сумме напряженностей полей, которые создавал бы каждый из зарядов системы в отдельности.



+q1 -q2

 

 

 

 

 

 

 



Электрические поля могут быть изображены графически с помощью линий напряженности (силовых линий) электрического поля.

Линией напряженности электрического поля называют линию, касательная к которой в каждой точке совпадает с направлением вектора напряженности в этой точке.


 Густота линий выбирается так, чтобы количество линий, пронизывающих единицу площади поверхности, перпендикулярной к линиям площадки было равно численному значению вектора .


3. Работа сил электростатического поля. Потенциал электростатического поля


F

dr α dl

1 q´ 2

 

r1 r2


 q

 Сила, действующая на точечный заряд, находящийся в поле другого заряда, является центральной. Центральное поле сил является потенциальным. Если поле потенциально, то работа по перемещению заряда в этом поле не зависит от пути, по которому перемещается заряд а зависит от начального и конечного положения заряда  и .

Работа на элементарном пути



= .


Из данной формулы следует, что силы, действующие на заряд  в поле неподвижного заряда , являются консервативными, т.к. работа по перемещению заряда  действительно определяется начальным и конечным положением заряда.

Из курса механики известно, что работа консервативных сил на замкнутом пути равна нулю.


 



Циркуляция вектора напряженности электростатического поля по любому замкнутому контуру равна нулю.

Потенциал

Тело, находящееся в потенциальном поле сил, обладает энергией, за счет которой совершается работа силами поля


.


Следовательно, потенциальная энергия заряда  в поле неподвижного заряда


.


Величина, равная отношению потенциальной энергии заряда к величине этого заряда, называется потенциалом электростатического поля


.



Потенциал является энергетической характеристикой электрического поля.

Потенциал электрического поля точечного заряда


.


Потенциал поля, создаваемого системой заряженных тел равен алгебраической сумме потенциалов, создаваемых каждым зарядом в отдельности


.


Заряд , находящийся в точке поля с потенциалом , обладает энергией


.


Работа сил поля над зарядом

Величина  называется напряжением. Потенциал и разность потенциалов (напряжение) измеряются в вольтах (В).


4. Связь между напряженностью электростатического поля и потенциалом

Работа сил электрического поля над зарядом  на отрезке пути


.


С другой стороны , поэтому .

Отсюда следует, что


. ; ; .

.

.


Величина, стоящая в скобках, называется градиентом потенциала.

Следовательно, напряженность электрического поля равна градиенту потенциала, взятому с противоположным знаком .

Для однородного электростатического поля , в то же время . Следовательно, , .

Для наглядного изображения электрического поля наряду с линиями напряженности пользуются поверхностями равного потенциала (эквипотенциальными поверхностями). Линии напряженности электростатического поля перпендикулярны (ортогональны) эквипотенциальным поверхностям.


5. Проводники в электростатическом поле. Явление электростатической индукции. Диэлектрики в электростатическом поле


Проводники в электростатическом поле. Электростатическая индукция.

К проводникам относят вещества, у которых имеются свободные заряженные частицы, способные двигаться упорядоченно по всему объему тела под действием электрического поля. Заряды таких частиц называют свободными.

Проводниками являются металлы, некоторые химические соединения, водные растворы солей, кислот и щелочей, расплавы солей, ионизированные газы.

Рассмотрим поведение в электрическом поле твердых металлических проводников. В металлах носителями свободных зарядов являются свободные электроны, называемые электронами проводимости.




Е0


- +

-                                   +

-                                   +

-                                   +

-                                   +

-                                   +

 Если внести незаряженный металлический проводник в однородное электрическое поле, то под действием поля в проводнике возникает направленное движение свободных электронов в направлении, противоположном направлению вектора напряженности Ео этого поля. Электроны будут скапливаться на одной стороне проводника, образуя там избыточный отрицательный заряд, а их недостача на другой стороне проводника приведет к образованию там избыточного положительного заряда, т.е. в проводнике произойдет разделение зарядов. Эти нескомпенсированные разноименные заряды появляются на проводнике только под действием внешнего электрического поля, т.е. такие заряды являются индуцированными (наведенными), а в целом проводник по-прежнему остается незаряженным.


Такой вид электризации, при котором под действием внешнего электрического поля происходит перераспределение зарядов между частями данного тела, называют электростатической индукцией.

Появившиеся вследствие электростатической индукции на противоположных частях проводника нескомпенсированные электрические заряды создают своё собственное электрическое поле, его напряженность Ес внутри проводника направлена против напряженности Ео внешнего поля, в которое помещен проводник. По мере разделения зарядов в проводнике и накопления их на противоположных частях проводника напряженность Ес внутреннего поля увеличивается и становится равной Ео. Это приводит к тому, что напряженность Е результирующего поля внутри проводника становится равной нулю. При этом наступает равновесие зарядов на проводнике.

Весь нескомпенсированный заряд в этом случае находится только на наружной поверхности проводника, а внутри проводника электрическое поле отсутствует.

Данное явление используют при создании электростатической защиты, сущность которой состоит в том, что для предохранения чувствительных приборов от влияния электрических полей их помещают в металлические заземленные корпуса или сетки.

Диэлектрики в электростатическом поле.

К диэлектрикам относят вещества, в которых при обычных условиях (т.е. при не слишком высоких температурах и отсутствии сильных электрических полей) нет свободных электрических зарядов.

В отличие от проводников в диэлектриках заряженные частицы не способны двигаться по всему объему тела, а могут лишь смещаться на небольшие расстояния (порядка атомных) относительно своих постоянных положений. Следовательно, электрические заряды в диэлектриках являются связанными.

В зависимости от строения молекул все диэлектрики можно разбить на три группы. К первой группе относятся диэлектрики, молекулы которых имеют асимметричное строение (вода, спирты, нитробензол). У таких молекул центры распределения положительных и отрицательных зарядов не совпадают. Такие молекулы можно рассматривать как электрические диполи.

Молекулы, представляющие собой электрические диполи называю полярными. Они обладают электрическим моментом p = q l даже при отсутствии внешнего поля.

Ко второй группе относят диэлектрики, молекулы которых симметричны (например, парафин, азот, кислород). У таких молекул центры распределения положительных и отрицательных зарядов совпадают. При отсутствии внешнего электрического поля такие молекулы не обладают электрическим моментом. Их называют неполярными молекулами.

Во внешнем электрическом поле центры распределения положительных и отрицательных зарядов неполярных молекул смещаются в противоположные стороны. Молекулы становятся диполями и приобретают дополнительный электрический момент p = q l.

К третьей группе относят кристаллические диэлектрики, имеющие ионное строение (NaCl, CaCl2 и другие).


 р

F+

+q

 

α Е0

 

 


-q

F-

 Поскольку молекулы и полярных и неполярных диэлектриков в электрическом поле представляют собой электрические диполи, рассмотрим поведение диполя во внешнем однородном поле (Ео = соnst).

На каждый из зарядов диполя действует сила. Эти силы F+ и F- равны по модулю и противоположны по направлению. Они создают пару сил, создающих вращательный момент М = рЕо sin α.

Под действием вращательного момента М диполь стремится повернуться так, чтобы направление вектора р совпало с направлением вектора Ео, т.е. ориентируется по направлению внешнего поля.

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.