рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Физика, основы теории

 Если диэлектрик неполярный, то при отсутствии внешнего электрического поля его молекулы вообще не имеют электрических моментов. Если же диэлектрик полярный, но не находится в электрическом поле, то тепловое движение создает полный беспорядок в расположении его молекул-диполей, вследствие чего их электрические моменты ориентированы по всевозможным направлениям и их векторная сумма равна нулю. Следовательно, диэлектрик в целом не обладает электрическим моментом.


 


-σ´

Е0

+σ´

 Пусть образец из диэлектрика находится в однородном электрическом поле. Поскольку молекулы и полярных и неполярных диэлектриков в электрическом поле являются диполями, а диполи ориентируются вдоль внешнего поля, векторы электрических моментов молекул в основном ориентированы упорядоченно. В этом случае векторная сумма электрических моментов не равна нулю. Следовательно, диэлектрик в целом обладает электрическим моментом. Внутри диэлектрика, находящегося в электрическом поле, разноименные заряды соседних диполей расположены вблизи друг друга и взаимно компенсируются. Поэтому диэлектрик остается незаряженным. А на противоположных поверхностях диэлектрика,


перпендикулярных линиям напряженности внешнего поля, появляются нескомпенсированные и равные по значению поляризационные заряды, т.е. диэлектрик поляризуется.

Если в электрическое поле внести диэлектрик ионного типа, то в нем происходит небольшое смещение ионов кристаллической решетки (положительных - по полю, отрицательных - против поля). Это приводит к тому, что ионный диэлектрик в электрическом поле обладает электрическим моментом.

Таким образом, сущность процесса поляризации диэлектрика любого типа состоит в том, что в электрическом поле каждый элемент объема диэлектрика и весь диэлектрик в целом приобретает отличный от нуля электрический момент.

Поляризационные заряды создают в диэлектрике собственное электрическое поле, направленное против внешнего электрического поля. В результате суперпозиции двух этих полей напряженность поля, создаваемого зарядами, внесенными в диэлектрик, становится в нем в ε раз меньше, чем в вакууме (ε - диэлектрическая проницаемость среды).

6. Электроемкость. Конденсаторы. Емкость плоского конденсатора

 

Потенциал уединенного проводника пропорционален сообщенному ему заряду, поэтому отношение заряда проводника к его потенциалу не зависит от заряда и является характеристикой данного проводника.

Электроемкостью уединенного проводника называют величину, равную отношению заряда проводника к потенциалу этого проводника.


 .


На практике применяются

Электроемкость проводника не зависит от вещества, из которого он изготовлен, а зависит от его формы, размеров и диэлектрической проницаемости среды, в которой находится этот проводник.

Используя формулу потенциала электрического поля, созданного равномерно заряженным шаром


, для емкости шара получим .

 

КОНДЕНСАТОРЫ

Уединенные проводники обладают малой емкостью. На практике возникает потребность в устройствах, которые при небольшом относительно окружающих тел потенциале накапливали бы на себе значительные заряды.

Конденсатором называют систему, состоящую из двух разделенных диэлектриком проводников, на которых могут накапливаться заряды противоположных знаков.

Проводники, образующие конденсатор, называют обкладками.

Чтобы внешние тела не влияли на емкость конденсатора, обкладкам придают такую форму и так располагают их друг относительно друга, чтобы поле, создаваемое накапливаемыми на них зарядами, было полностью сосредоточено внутри конденсатора. Этому условию удовлетворяют две близко расположенные пластины, два коаксиальных цилиндра и две концентрические сферы.

Емкостью конденсатора называют величину, равную отношению заряда конденсатора к разности потенциалов (напряжению) между его обкладками


=.

 


ЕМКОСТЬ ПЛОСКОГО КОНДЕНСАТОРА

Напряженность поля между обкладками плоского конденсатора


.


Для однородного поля справедливо соотношение


.


Следовательно, емкость плоского конденсатора


 


(S – площадь обкладок, d – расстояние между обкладками).

 

7. Соединение конденсаторов. Энергия заряженного конденсатора


При параллельном соединении конденсаторов напряжения на каждом конденсаторе одинаковы и равны напряжению на клеммах батареи


.


Заряд батареи


.



Исходя из того, что , имеем


,


 поэтому


.


При последовательном соединении конденсаторов


, .


Учитывая, что , имеем


,


поэтому при последовательном соединении конденсаторов


.

 

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

При зарядке конденсатора совершается работа по перемещению электрических зарядов против сил электрического поля. При перемещении заряда  совершается работа . Учитывая, что , получим . Следовательно,


.


По закону сохранения энергии эта работа равна энергии заряженного конденсатора, т.е.


.

Используя формулы  и , получим


 и .

8. Закон Ома для однородного участка цепи. Сопротивление проводников

Участок цепи, на котором не действуют сторонние силы, приводящие к возникновению ЭДС, называется однородным.

Согласно закону Ома для однородного участка цепи постоянного тока: сила тока в однородном проводнике пропорциональна напряжению на его концах и обратно пропорциональна сопротивлению данного проводника.


.


Опыты показывают, что сопротивление R проводника пропорционально его длине, обратно пропорционально площади его поперечного сечения и зависит от вещества, из которого изготовлен проводник. Для однородного проводника длиной l и неизменной площадью поперечного сечения S эту зависимость выражают формулой


,


где  - коэффициент пропорциональности, называемый удельным электрическим сопротивлением. Удельное сопротивление равно сопротивлению проводника, изготовленного из данного вещества и имеющего единичную длину и единичную площадь поперечного сечения. Удельное сопротивление есть свойство проводника и зависит от его состояния.

Сопротивление цепи, состоящей из последовательно соединенных проводников, равно сумме сопротивлений этих проводников.


.


Сопротивление цепи, состоящей из параллельно соединенных проводников можно определить из формулы



9. Закон Джоуля - Ленца. Закон Ома для неоднородного участка цепи. Разветвленные цепи. Правила Кирхгофа

В замкнутой электрической цепи, по которой идет ток, происходят процессы превращения энергии из одного вида в другой. В источнике тока не электрическая энергия превращается в электрическую, а на потребителях энергии, включенных во внешнюю часть цепи, энергия электрического тока может превращаться в любой другой вид энергии (в зависимости от типа потребителя).

Если движущихся проводников на данном участке цепи нет, энергия электрического тока переходит во внутреннюю энергию этого участка, увеличивая её. Если участок однородный, то увеличение его внутренней энергии приводит к повышению температуры участка. Проводник, по которому идет ток, нагревается и отдает теплоту окружающим телам. Закон, определяющий количество теплоты, выделяемое в проводнике, был установлен экспериментально Джоулем и Ленцем. Согласно закону Джоуля - Ленца, количество теплоты, выделившееся при прохождении по нему тока, пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого в проводнике поддерживается постоянный ток.

Формула закона Джоуля – Ленца имеет следующий вид .

Постоянный ток в замкнутой цепи вызывается стационарным электрическим полем, которое должно непрерывно поддерживаться источником тока. В источнике тока действуют не электростатические силы, называемые сторонними. Эти силы совершают работу против электростатических сил по разделению положительных и отрицательных зарядов, что и приводит к поддержанию электрического поля в цепи и разности потенциалов между любыми её точками. Работа сторонних сил связана с превращением энергии не электрической в энергию электрического тока. Количественной мерой работы сторонних сил является величина, называемая электродвижущей силой (ЭДС).

ЭДС источника равна отношению работы сторонних сил, совершаемой при перемещении по замкнутой цепи заряда к величине этого заряда, т.е.



ЭДС выражают в вольтах (В).

Сторонние силы могут действовать не только в источнике тока, но и на отдельных участках цепи. Такие участки называют неоднородными. ЭДС неоднородного участка цепи численно равна работе сторонних сил при перемещении единичного заряда по данному участку.

Согласно закону Ома для неоднородного участка цепи


.


В этой формуле  - ЭДС, действующая на данном неоднородном участке,

 - разность потенциалов между концами участка, - полное сопротивление участка (равно сумме внешнего и внутреннего сопротивления).

В случае замкнутой цепи закон Ома имеет следующий вид:


.


Для расчета разветвленных цепей постоянного тока используют законы (правила) Кирхгофа.

Если считать токи, входящие в узел, положительными, а выходящие из узла – отрицательными, то первое правило Кирхгофа может быть сформулировано так:

в любом узле замкнутой электрической цепи алгебраическая сумма токов равна нулю, т.е.


.


Второе правило Кирхгофа является обобщением закона Ома на разветвленные цепи и может быть сформулировано так: в любом неразветвленном контуре алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений, т.е.


.


На основе правил Кирхгофа составляют систему уравнений, решение которой позволяет вычислить силы токов в ветвях цепи.


10. Взаимодействие токов. Магнитное поле. Магнитная индукция


Если по двум тонким прямолинейным проводникам текут токи одного направления, то проводники притягиваются, если направления токов противоположны, то проводники отталкиваются.

Сила взаимодействия для прямолинейных проводников, приходящаяся на единицу длины, определяется по формуле:


,


где а – расстояние между проводниками, - магнитная постоянная, .

Взаимодействие токов, осуществляется посредством магнитных полей создаваемых токами.

Подобно тому, как для исследования электростатического поля используют пробный точечный заряд, для исследования магнитного поля используют пробный ток, циркулирующий в пробном замкнутом контуре очень малых размеров. Ориентацию контура в пространстве характеризуют направлением нормали  к контуру, связанной с направлением тока правилом правого винта. Такую нормаль называют положительной.

Если внести пробный контур в магнитное поле, то поле оказывает на контур ориентирующее действие, устанавливая его положительной нормалью в определенном направлении. Это направление принимают за направление магнитного поля в данной точке.

Магнитным моментом контура называют величину


,


где I – сила тока в контуре, S – площадь контура.

Физическую величину, равную отношению максимального вращательного момента , действующего на контур, к магнитному моменту контура называют магнитной индукцией



Магнитная индукция в системе СИ измеряется в теслах (Тл).

Наряду с магнитной индукцией для описания магнитного поля вводится величина, называемая напряженностью магнитного поля. Для вакуума


.



11. Магнитное поле в веществе. Магнитные свойства вещества


Гипотеза Ампера

Если проводники, по которым течет ток, находятся не в вакууме, а в среде, то магнитное поле может существенно изменяться. Это обусловлено тем, что всякое вещество является магнетиком, т.е. способно намагничиваться. Намагниченное вещество создает магнитное поле , которое накладывается на поле , обусловленное токами. Индукция результирующего поля: .

Причина магнитных свойств вещества была объяснена Ампером. Он пришел к выводу, что магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него. Согласно гипотезе Ампера внутри молекул и атомов циркулируют элементарные электрические токи. Если плоскости, в которых циркулируют эти токи, расположены хаотично вследствие теплового движения молекул, то вещество не обнаруживает магнитных свойств. Если вещество намагничено, то токи ориентированы так, что их действия складываются.

Магнитные свойства вещества

Намагничение магнетика характеризуют магнитным моментом единицы объема. Эту величину называют вектором намагничения



Формула справедлива для неоднородно намагниченного магнетика.

- бесконечно малый объем, взятый в окрестности рассматриваемой точки,

- магнитный момент отдельной молекулы. Суммирование производится по всем молекулам, заключенным в объеме .

Вектор намагничения связан с напряженностью магнитного поля в той же точке соотношением , где - магнитная восприимчивость вещества (безразмерная величина).

Часто вместо восприимчивости единицы объема  пользуются отнесенной к одному киломолю вещества киломолярной (для химически простых веществ – килоатомной) восприимчивостью .


, где - объем киломоля вещества (измеряется в ).


В зависимости от знака и величины магнитной восприимчивости все магнетики подразделяются на три группы:

1)                 диамагнетики, у которых - отрицательна и мала по абсолютной величине (~ ).

2)                 парамагнетики, у которых  тоже невелика, но положительна (~ ).

3)                 Ферромагнетики, у которых  положительна и достигает больших значений (~ ).

Кроме того, в отличие от диа- и парамагнетиков, для которых  постоянна, магнитная восприимчивость ферромагнетиков является функцией напряженности магнитного поля.

Таким образом, вектор намагничения  может как совпадать по направлению с  (у пара- и ферромагнетиков), так и быть направленным в противоположную сторону (у диамагнетиков).

Описание поля в магнетиках

Для описания поля в магнетиках часто пользуются величиной



.


напряженность магнитного поля.

В вакууме вектор намагничения , поэтому .

В магнетиках , или .

Величину  называют относительной магнитной проницаемостью вещества.

Следовательно, .

ДИАМАГНЕТИКИ

У диамагнетиков магнитная проницаемость  чуть меньше единицы. К ним относят, например, медь, золото, серебро, ртуть, хлор, инертные газы и другие вещества.

Образец из диамагнитного материала, помещенный во внешнее однородное магнитное поле, устанавливается перпендикулярно линиям индукции этого поля. В неоднородном магнитном поле на образец действует сила, стремящаяся вытолкнуть его за пределы поля. Магнитная проницаемость диамагнетиков не зависит от напряженности магнитного поля.

Атомы диамагнитных веществ не обладают магнитным моментом (векторная сумма орбитальных и спиновых магнитных моментов электронов атома равна нулю). Когда диамагнетик попадает во внешнее магнитное поле, то под действием этого поля у атомов диамагнетика индуцируются магнитные моменты, ориентированные против направления внешнего поля. В результате модуль магнитной индукции результирующего поля В меньше, чем модуль индукции магнитного поля в вакууме .

ПАРАМАГНЕТИКИ

У парамагнетиков  чуть больше единицы. К ним относят натрий, магний, алюминий, кислород, многие другие элементы, а так же растворы некоторых солей.

Образец из парамагнетика в однородном внешнем магнитном поле устанавливается вдоль линий индукции поля. В неоднородном магнитном поле на парамагнитный образец действует сила, стремящаяся втянуть его в область более сильного поля. Магнитная проницаемость парамагнетиков не зависит от напряженности внешнего магнитного поля.

Парамагнитные вещества состоят из атомов, в которых орбитальные магнитные моменты электронов нескомпенсированы. Поэтому атомы парамагнетика имеют отличные от нуля магнитные моменты. Однако при отсутствии внешнего магнитного поля тепловое движение атомов приводит к хаотическому расположению их магнитных моментов, вследствие чего любой объем парамагнетика в целом магнитным моментом не обладает.

При внесении парамагнетика во внешнее магнитное поле его атомы в большей или меньшей степени (в зависимости от индукции поля) располагаются так, что их магнитные моменты ориентируются по направлению внешнего поля. В результате индукция результирующего поля в парамагнетике больше индукции магнитного поля в вакууме, т.е. В>В0.


12. Закон Ампера. Сила Лоренца

Ампер экспериментально установил, что величина силы, действующей на элемент тока , находящийся в магнитном поле с индукцией В определяется по формуле


,


где - угол между векторами  и  (направлен по току в проводнике).

Для прямолинейного проводника формула модуля силы Ампера имеет вид


.


Направление силы Ампера определяют по правилу левой руки. Сила Ампера всегда перпендикулярна элементу тока и направлению вектора магнитной индукции.

Действие магнитного поля на проводник с током используется в устройстве электродвигателей, громкоговорителей, электроизмерительных приборов магнитоэлектрической системы.

На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца


,


где q – заряд частицы, v- её скорость,  - угол между векторами  и .

Направление силы Лоренца определяют по правилу левой руки. Сила Лоренца всегда перпендикулярна направлению вектора скорости и вектора магнитной индукции. Под действием этой силы модуль скорости заряда и его кинетическая энергия не изменяются, а направление скорости заряда изменяется непрерывно.

Действие магнитного поля на движущиеся заряды широко используют в технике. Например, с помощью магнитного поля осуществляют фокусировку пучков заряженных частиц в ряде электронных приборов, управление электронным лучом в кинескопах телевизоров.

В экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания её в шнур, не касающийся стенок рабочей камеры.

Движение заряженных частиц в магнитном поле по окружности используют в циклических ускорителях заряженных частиц – циклотронах.

Действие силы Лоренца применяют также в масс-спектрографах, которые предназначены для разделения заряженных частиц по их удельным зарядам.


13. Ферромагнетики. Магнитный гистерезис. Применения ферромагнетизма. Природа ферромагнетизма

Вещества, у которых магнитная проницаемость во много раз больше единицы, называют ферромагнетиками. К ним относят железо, никель, кобальт и многие сплавы.

Во внешнем магнитном поле ферромагнитный образец ведет себя подобно парамагнитному. Однако магнитная проницаемость ферромагнетика зависит от напряженности внешнего магнитного поля и изменяется в довольно широких пределах, вследствие чего зависимость  является нелинейной. Впервые зависимость  от Н экспериментально исследовал А.Г. Столетов.

Значение магнитной проницаемости у некоторых ферромагнитных сплавов достигает десятков тысяч. Поэтому ферромагнетики относят к сильномагнитным веществам.

Для каждого ферромагнетика существует определенная температура, называемая точкой Кюри, при нагревании выше которой данное вещество теряет ферромагнитные свойства и превращается в парамагнетик (для железа 1043 К, для никеля 631 К).

МАГНИТНЫЙ ГИСТЕРЕЗИС

Явление запаздывания изменения магнитной индукции в ферромагнетике относительно изменения напряженности внешнего магнитного поля, приводящее к неоднозначной зависимости В от Н, называют магнитным гистерезисом.

Вследствие гистерезиса при убывании Н до нуля образец полностью не размагничивается. Значение Вос называют остаточной индукцией.

Чтобы полностью размагнитить образец, изменяют направление внешнего магнитного поля на противоположное. Тогда при определенной напряженности (точка - Нк) индукция В становится равной нулю.

Значение напряженности Нк внешнего магнитного поля, которое необходимо приложить к образцу для полного его размагничивания, называют коэрцитивной силой.

При дальнейшем увеличении Н образец вновь начинает намагничиваться (в противоположном направлении) до насыщения (точка С2).

При уменьшении внешнего магнитного поля до нуля опять обнаруживается существование в образце остаточной индукции (точка - Вос), а при последующем изменении направления внешнего поля на противоположное и увеличении его напряженности можно вновь полностью размагнитить образец (точка Нк).

При дальнейшем увеличении напряженности внешнего магнитного поля вновь наступает насыщение образца (точка С1) и кривая замыкается.

Изображенный на рисунке график называют статической петлей гистерезиса.

Установлено, что площадь петли гистерезиса численно равна работе, которую надо совершить для перемагничивания данного образца.

Форма петли гистерезиса представляет собой одну из основных магнитных характеристик любого ферромагнитного вещества.

ПРИМЕНЕНИЯ ФЕРРОМАГНЕТИЗМА

Ферромагнетики делятся на две большие группы. К первой относятся магнитомягкие материалы, у которых площадь петли гистерезиса мала (следовательно, малы Вос и Нк). К таким ферромагнетикам относят химически чистое железо, электротехническая сталь, пермаллой (сплав железа и никеля) и т.д. Эти вещества почти полностью теряют намагниченность после удаления их из внешнего магнитного поля. Магнитомягкие материалы используют в трансформаторах, генераторах переменного тока, электродвигателях.

У магнитожестких материалов площадь петли гистерезиса велика (следовательно, велики Вос и Нк). Эти материалы в значительной степени сохраняют свою намагниченность и после вынесения их за пределы внешнего магнитного поля.

К таким ферромагнетикам относятся углеродистая и хромистая сталь, а также некоторые сплавы. Магнитожесткие материалы используют для изготовления постоянных магнитов.

Большое применение в радиотехнике имеют ферриты – вещества, являющиеся химическими соединениями оксида железа с оксидами других металлов. Ферриты обладают одновременно свойствами и ферромагнетиков, и полупроводников. Их используют для изготовления сердечников катушек индуктивности, внутренних антенн малогабаритных приемников и т.д.

ПРИРОДА ФЕРРОМАГНЕТИЗМА

В отличие от диа- и парамагнетиков, у которых магнитные свойства определяются орбитальными магнитными моментами атомных электронов, магнитные свойства ферромагнетиков обусловлены спиновыми магнитными моментами электронов. Ферромагнитные вещества (всегда имеющие кристаллическую структуру) состоят из атомов, в которых не у всех электронов спиновые магнитные моменты взаимно скомпенсированы.

В ферромагнетиках существуют области самопроизвольного (спонтанного) намагничения, которые называют доменами. Размер доменов порядка 10 – 4 – 10 – 7 м. В каждом домене спиновые магнитные моменты атомных электронов имеют одинаковую ориентацию, вследствие чего домен оказывается намагниченным до состояния насыщения. Поскольку при отсутствии внешнего магнитного поля магнитные моменты доменов ориентированы хаотически, ферромагнитный образец в таких условиях в целом не намагничен.

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.