![]() |
|
|
О взаимосвязи философии и математикиО взаимосвязи философии и математикисмотреть на рефераты похожие на "О взаимосвязи философии и математики" Министерство высшего и профессионального образования РФ Брянский государственный педагогический университет имени акад. И.Г. Петровского КАФЕДРА ФИЛОСОФИИ РЕФЕРАТ по философии О ВЗАИМОСВЯЗИ ФИЛОСОФИИ И МАТЕМАТИКИ Соискатель кафедры педагогики БГПУ имени академика И.Г. Петровского xxxxxxxxxxxxxxxxxx xxxxxxxx Брянск 1998 Оглавление 1.Введение______________________________________________3 2.Милетская школа________________________________________6 3. Пифагорейская школа_________________________________11 3. Элейская школа______________________________________16 4. Демокрит____________________________________________19 5. Платоновский идеализм_______________________________24 6. Система философии математики Аристотеля_____________29 7. Список использованной литературы____________________36 ВВЕДЕНИЕ Вопрос о взаимосвязи математики и философии впервые был задан довольно
давно. Аристотель, Бэкон, Леонардо да Винчи - многие великие умы
человечества занимались этим вопросом и достигали выдающихся результатов. Совместный путь математики и философии начался в Древней Греции около Известно, что греческая цивилизация на начальном этапе своего развития отталкивалась от цивилизации древнего Востока. Каково же было математическое наследие, полученное греками? Из дошедших до нас математических документов можно заключить, что в Математика Вавилона, как и египетская, была вызвана к жизни потребностями производственной деятельности, поскольку решались задачи, связанные с нуждами орошения, строительства, хозяйственного учета, отношениями собственности, исчислением времени. Сохранившиеся документы показывают, что, основываясь на 60-ричной системе счисления, вавилоняне могли выполнять четыре арифметических действия, имелись таблицы квадратных корней, кубов и кубических корней, сумм квадратов и кубов, степеней данного числа, были известны правила суммирования прогрессий. Замечательные результаты были получены в области числовой алгебры. Хотя вавилоняне и не знали алгебраической символики, но решение задач проводилось по плану, задачи сводились к единому «нормальному» виду и затем решались по общим правилам, причем истолкование преобразований «уравнения» не связывалось с конкретной природой исходных данных. Встречались задачи, сводящиеся к решению уравнений третьей степени и особых видов уравнений четвертой, пятой и шестой степеней. Если же сравнивать математические науки Египта и Вавилона по способу
мышления, то нетрудно будет установить их общность по таким
характеристикам, как авторитарность, некритичность, следование за
традицией, крайне медленная эволюция знаний. Эти же черты обнаруживаются и
в философии, мифологии, религии Востока. Как писал по этому поводу Э. Анализ древнегреческой математики и философии следует начать с милетской математической школы, заложившей основы математики как доказательной науки. Милетская школа Милетская школа - одна из первых древнегреческих математических школ,
оказавшая существенное влияние на развитие философских представлений того
времени. Она существовала в Ионии в конце V - IV вв. до н.э.; основными
деятелями ее являлись Фалес (ок. 624-547 гг. до н.э.), Анаксимандр (ок. 610- Если сопоставить исходные математические знания греков с достижениями египтян и вавилонян, то вряд ли можно сомневаться в том, что такие элементарные положения, как равенство углов у основания равнобедренного треугольника, открытие которого приписывают Фалесу Милетскому, не были известны древней математике. Тем не менее, греческая математика уже в исходном своем пункте имела качественное отличие от своих предшественников. Ее своеобразие заключается прежде всего в попытке систематически использовать идею доказательства. Фалес стремится доказать то, что эмпирически было получено и без должного обоснования использовалось в египетской и вавилонской математике. Возможно, в период наиболее интенсивного развития духовной жизни Вавилона и Египта, в период формирования основ их знаний, изложение тех или иных математических положений сопровождалось обоснованием в той или иной форме. Однако, как пишет Ван дер Варден, «во времена Фалеса египетская и вавилонская математика давно уже были мертвыми знаниями. Можно было показать Фалесу, как надо вычислять, но уже неизвестен был ход рассуждений, лежащих в основе этих правил»[3]. Греки вводят процесс обоснования как необходимый компонент математической действительности - доказательность, которая действительно являлась отличительной чертой их математики. Техникой доказательства ранней греческой математики как в геометрии, так и в арифметике, первоначально являлась простая попытка придания наглядности. Конкретными разновидностями такого доказательства в арифметике было доказательство при помощи камешков, в геометрии - путем наложения. Но сам факт наличия доказательства говорит о том, что математические знания воспринимаются не догматически, а в процессе размышления. Это, в свою очередь, обнаруживает критический склад ума, уверенность (может быть, не всегда осознанную), что размышлением можно установить правильность или ложность рассматриваемого положения, уверенность в силе человеческого разума. Греки в течении одного-двух столетий сумели овладеть математическим
наследием предшественников, накопленного в течении тысячелетий, что
свидетельствует об интенсивности, динамизме их математического познания. Эти же черты характерны и для философских исследований милетской
школы. Философская концепция и совокупность математических положений
формируется посредством однородного по своим общим характеристикам
мыслительного процесса, качественно отличного от мышления предшествующей
эпохи. Как же сформировался этот новый способ восприятия действительности? Ряд исследователей объявляет отмеченные выше характеристики
мыслительного процесса «врожденными особенностями греческого духа»[4]. Иония, где проходила деятельность милетской школы, была достаточно развитой в экономическом отношении областью. Поэтому именно она прежде прочих вступила на путь низвержения первобытно-общинного строя и формирования рабовладельческих отношений. В VIII-VI вв. до н.э. земля все больше сосредотачивалась в руках крупной родовой знати. Развитие ремесленного производства и торговли еще в большей мере ускоряло процесс социально-имущественного расслоения. Отношения между аристократией и демосом становятся напряженными; со временем эта напряженность перерастает в открытую борьбу за власть. Калейдоскоп событий во внутренней жизни, не менее изменчивая внешняя обстановка формируют динамизм, живость общественной мысли. Напряженность в политической и экономической сферах приводит к
столкновениям в области религии, поскольку демос , еще не сомневаясь в том,
что религиозные и светские установления вечны, так как даны богами,
требует, чтобы они были записаны и стали общедоступными, ибо правители
искажают божественную волю и толкуют ее по-своему. Однако нетрудно понять,
что систематическое изложение религиозных и мифологических представлений «Таким образом, материалистическое мировоззрение Фалеса и его
последователей не является каким-то загадочным, не от мира сего порождением На основании всего вышеперечисленного еще нельзя с большой уверенностью утверждать, что именно воздействие мировоззрения явилось решающим фактором для возникновения доказательства; не исключено ведь, что это произошло в силу других причин: потребностей производства, запросов элементов естествознания, субъективных побуждений исследователей. Однако можно убедиться, что каждая из этих причин не изменила принципиально своего характера по сравнению с догреческой эпохой, непосредственно не приводящей к превращению математики в доказательную науку. Например, для удовлетворения потребностей техники было вполне достаточно практической науки древнего Востока, в справедливости положений которой можно было убедиться эмпирически. Сам процесс выявления этих положений показал, что они дают достаточную для практических нужд точность. Можно считать одним из побудительных мотивов возникновения доказательства необходимость осмысления и обобщения результатов предшественников. Однако и этому фактору не принадлежит решающая роль, так как, например, существуют теории, воспринимаемые нами как очевидные, но получившие строгое обоснование в античной математике (например, теория делимости на 2). Появление потребности доказательства в греческой математике получает удовлетворительное объяснение, если учесть взаимодействие мировоззрения на развитие математики. В этом отношении греки существенно отличаются от своих предшественников. В их философских и математических исследованиях проявляются вера в силу человеческого разума, критическое отношение к достижениям предшественников, динамизм мышления. У греков влияние мировоззрения превратилось из сдерживающего фактора математического познания в стимулирующий, в действенную силу прогресса математики. В том, что обоснование приняло именно форму доказательства, а не
остановилось на эмпирической проверке, решающим является появление новой,
мировоззренческой функции науки. Фалес и его последователи воспринимают
математические достижения предшественников прежде всего для удовлетворения
технических потребностей, но наука для них - нечто большее, чем аппарат для
решения производственных задач. Отдельные, наиболее абстрактные элементы
математики вплетаются в натурфилософскую систему и здесь выполняют роль
антипода мифологическим и религиозным верованиям. Эмпирическая
подтверждаемость для элементов философской системы была недостаточной в
силу общности их характера и скудности подтверждающих их фактов. ПИФАГОРЕЙСКАЯ ШКОЛА На основании данного выше исследования милетской школы можно лишь убедиться в активном влиянии мировоззрения на процесс математического познания только при радикальном изменении социально-экономических условий жизни общества. Однако остаются открытыми вопросы о том, влияет ли изменение философской основы жизни общества на развитие математики, зависит ли математическое познание от изменения идеологической направленности мировоззрения, имеет ли место обратное воздействие математических знаний на философские идеи. Можно попытаться ответить на поставленные вопросы, обратившись к деятельности пифагорейской школы. Пифагореизм как направление духовной жизни существовал на протяжении
всей истории Древней Греции, начиная с VI века до н. э. и прошел в своем
развитии ряд этапов. Вопрос о их временной длительности сложен и до сих пор
не решен однозначно. Основоположником школы был Пифагор Самосский (ок. 580- В пифагореизме выделяют две составляющие: практическую («пифагорейский
образ жизни») и теоретическую (определенная совокупность учений). В
религиозном учении пифагорейцев наиболее важной считалась обрядовая
сторона, затем имелось в виду создать определенное душевное состояние и
лишь потом по значимости шли верования, в трактовке которых допускались
разные варианты. По сравнению с другими религиозными течениями, у
пифагорейцев были специфические представления о природе и судьбе души. Душа Теоретическая сторона пифагореизма тесно связана с практической. В
теоретических изысканиях пифагорейцы видели лучшее средство освобождения
души из круга рождений, а их результаты стремились использовать для
рационального обоснования предполагаемой доктрины. Вероятно, в деятельности Основными объектами научного познания у пифагорейцев были
математические объекты, в первую очередь числа натурального ряда (вспомним
знаменитое «Число есть сущность всех вещей»[7]). Видное место отводилось
изучению связей между четными и нечетными числами. В области геометрических
знаний внимание акцентируется на наиболее абстрактных зависимостях. Числа у пифагорейцев выступают основополагающими универсальными объектами, к которым предполагалось свести не только математические построения, но и все многообразие действительности. Физические, этические, социальные и религиозные понятия получили математическую окраску. Науке о числах и других математических объектах отводится основополагающее место в системе мировоззрения, то есть фактически математика объявляется философией. Как писал Аристотель, «...у чисел они усматривали, казалось бы, много сходных черт с тем, что существует и происходит, - больше, чем у огня, земли и воды... У них, по-видимому, число принимается за начало и в качестве материи для вещей, и в качестве выражения для их состояний и свойств... Например, такое-то свойство чисел есть справедливость, а такое- то - душа и ум, другое - удача, и можно сказать - в каждом из остальных случаев точно также»[8]. Если сравнивать математические исследования ранней пифагорейской и
милетской школ, то можно выявить ряд существенных различий. Так,
математические объекты рассматривались пифагорейцами как первосущность
мира, то есть радикально изменилось само понимание природы математических
объектов. Кроме того, математика превращена пифагорейцами в составляющую
религии, в средство очищения души, достижения бессмертия. И наконец,
пифагорейцы ограничивают область математических объектов наиболее
абстрактными типами элементов и сознательно игнорируют приложения
математики для решения производственных задач. Но чем же обусловлены такие
глобальные расхождения в понимании природы математических объектов у школ,
существовавших практически в одно и то же время и черпавших свою мудрость,
по-видимому, из одного и того же источника - культуры Востока? Впрочем, Аристотель был одним из первых, кто попытался объяснить причины появления пифагорейской концепции математики. Он видел их в пределах самой математики: «Так называемые пифагорейцы, занявшись математическими науками, впервые двинули их вперед и, воспитавшись на них, стали считать их началами всех вещей»[9]. Подобна точка зрения не лишена основания хотя бы в силу применимости математических положений для выражения отношений между различными явлениями. На этом основании можно, неправомерно расширив данный момент математического познания, прийти к утверждению о выразимости всего сущего с помощью математических зависимостей, а если считать числовые отношения универсальными, то «число есть сущность всех вещей»[10]. Кроме того, ко времени деятельности пифагорейцев математика прошла длинный путь исторического развития; процесс формирования ее основных положений терялся во мраке веков. Таким образом, появлялось искушение пренебречь им и объявить математические объекты чем-то первичным по отношению к существующему миру. Именно так и поступили пифагорейцы. В советской философской науке проблема появления пифагорейской
концепции математики рассматривалась, естественно, с позиций марксистско-
ленинской философии. Так, О.И. Кедровский пишет: «...Выработанная им Таким образом, уже в исходном пункте своего развития теоретическая математика была подвержена влиянию борьбы двух типов мировоззрения - материалистического и религиозно-идеалистического. Мы же убедились, что наряду с влиянием мировоззрения на развитие математического познания, имеет место и обратное воздействие. ЭЛЕЙСКАЯ ШКОЛА Элейская школа довольно интересна для исследования, так как это одна
из древнейших школ, в трудах которой математика и философия достаточно
тесно и разносторонне взаимодействуют. Основными представителями элейской
школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина Философия Парменида заключается в следующем: всевозможные системы
миропонимания базируются на одной из трех посылок: 1) есть только бытие,
небытия нет; 2) существует не только бытие, но и небытие; 3) бытие и
небытие тождественны. Истинный Парменид признает только первую посылку. С защитой учения Парменида от возражений выступил его ученик Зенон. Аргументы Зенона приводят к парадоксальным, с точки зрения «здравого смысла», выводам, но их нельзя было просто отбросить как несостоятельные, поскольку и по форме, и по содержанию удовлетворяли математическим стандартам той поры. Разложив апории Зенона на составные части и двигаясь от заключений к посылкам, можно реконструировать исходные положения, которые он взял за основу своей концепции. Важно отметить, что в концепции элеатов, как и в дозеноновской науке, фундаментальные философские представления существенно опирались на математические принципы. Видное место среди них занимали следующие аксиомы: 1. Сумма бесконечно большого числа любых, хотя бы и бесконечно малых, но протяженных величин должна быть бесконечно большой; 2. Сумма любого, хотя бы и бесконечно большого числа непротяженных величин всегда равна нулю и никогда не может стать некоторой заранее заданной протяженной величиной. Именно в силу тесной взаимосвязи общих философских представлений с
фундаментальными математическими положениями удар, нанесенный Зеноном по
философским воззрениям, существенно затронул систему математических знаний. Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |