рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Контрольная работа: Математические модели физико-химических процессов

Можно уменьшить производительность насоса и увеличить напор, прикрыв задвижку на напорном трубопроводу, т.е. вводя дополнительное сопротивление. При этом производительность насоса снизится, например, до Q2, но часть напора насоса будет бесполезно теряться на преодоление сопротивление задвижки (отрезок hпз). Следовательно, увеличение напора насоса сверх необходимого для преодоления сопротивлений сети нецелесообразно.


Рис. 4. Совместная характеристика насоса и трубопровода

14.  При каком соединении насосов (последовательном или параллельном) увеличиваются производительность, напор?

Часто требуется в сети установить не один насос, а целую систему насосов, которая обеспечит нужный напор и подачу. Такой системой является насосная станция. Регулирование подачи и напора насосной станции имеет более широкие возможности за счет соединения насосов параллельно и (или) последовательно.

При параллельном соединении насосов суммируется подача, при последовательном – напор. Если на насосной станции необходимо получить нужные рабочие параметры (Q – Н), то всегда существует возможность путем комбинации набора ряда насосов с ограниченной подачей соединить их параллельно, чтобы получить большую подачу и последовательно – чтобы получить больший напор. Для получения необходимого напора на автономных насосных станциях последовательное соединение применяют реже (бустерные или напорные насосы). На практике повышение напора осуществляется через отдельные каскады насосных станций.

Следует обратить внимание, что последовательное и параллельное соединение центробежных насосов, имеющих пологую напорную характеристику, не дает, как правило, возможности получения двойного значения напора и подачи. Это происходит по следующим причинам:

- при параллельном соединении не удается плавно соединить потоки из-за дополнительных изгибов и сужений напорных трубопроводов, необходимых для удобства монтажа. Это приводит к дополнительному сопротивлению сети и, соответственно, к смещению рабочей точки напорной характеристики в область меньших подач обоих насосов;

- при последовательном соединении насосов уменьшение суммарного напора происходит из-за потерь на промежуточном участке между насосами, вызванных наличием дополнительной арматуры.

При последовательном соединении следует обращать внимание на обеспечение необходимых условий всасывания на входе во второй насос.

15.  Перечислить и сравнить методы очистки газов от пыли. От каких факторов зависит выбор аппарата для очистки газа от пыли

Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.

Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся:

1) гравитационное осаждение;

2) инерционное и центробежное пылеулавливание;

3) фильтрация.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не .выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода – быстрое истирание или забивание щелей.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м3/ч), степень очистки составляет около 90% при диаметре частиц d>30 мкм. Для частиц с d =5ё30 мкм степень очистки снижается до 80%, а при d=2ё5 мкм она составляет менее 40%

Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Наиболее часто для фильтрации применяют специально изготовленные волокнистые материалы — стекловолокно, шерсть или хлопок с асбестом, асбоцеллюлозу. В зависимости от фильтрующего материала различают тканевые фильтры (в том числе рукавные), волокнистые, из зернистых материалов (керамика, металлокерамика, пористые пластмассы) Фильтрация– весьма распространенный прием тонкой очистки газов. Ее преимущества– сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.

Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. В аппаратах мокрой очистки применяют различные приемы развития поверхности соприкосновения жидкости и газа. Аппараты мокрой очистки газов отличаются высокой эффективностью улавливания взвешенных частиц и небольшой стоимостью по сравнению с аппаратами сухой очистки По принципу работы аппараты мокрой очистки газов делятся на следующие группы: полые и насадочные, барботажные и пенные, аппараты ударно- инерционного типа, центробежного типа, динамические и турбулентные промыватели.

Основной недостаток всех методов мокрой очистки газов от аэрозолей — это образование больших объемов жидких отходов (шлама). Таким образом, если не предусмотрены замкнутая система водооборота и утилизация всех компонентов шлама, то мокрые способы газоочистки по существу только переносят загрязнители из газовых выбросов в сточные воды, т. е. из атмосферы в водоемы

Электростатическая очистка газов служит универсальным средством, пригодным для любых аэрозолей, включая туманы кислот, и при любых размерах частиц. Метод основан на ионизации и зарядке частиц аэрозоля при прохождении газа через электрическое поле высокого напряжения, создаваемое коронирующими электродами.

Недостаток этого метода – большие затраты средств на сооружение и содержание очистных установок и значительный расход энергии на создание электрического поля. Расход электроэнергии на электростатическую очистку– 0,1-0,5 кВт на 1000 м3 очищаемого газа.

Звуковая и ультразвуковая коагуляция, а также предварительная электризация пока мало применяются в промышленности и находятся в основном в стадии разработки. Они основаны на укрупнении аэрозольных частиц, облегчающем их улавливание традиционными методами. Начальная концентрация частиц аэрозоля для звуковой коагуляции должна быть не менее 2 г/м3 (для частиц d = lё10 мкм).

Основной критерий выбора типа оборудования - степень очистки, которая зависит от свойств пыли и параметров газового потока. Промышленные пыли, уловленные в различных установках, используют в качестве целевых продуктов и сырья в исходных производствах (в т.ч. строительных), в сельском хозяйстве.

16.  Описать последовательность расчета скорости осаждения

Проведение процессов осаждения связано с движением твердых тел в жидкости. В промышленных условиях эти процессы проводятся в ограниченном объеме при большой концентрации твердой фазы. В таких условиях оседающие частицы могут влиять на движение друг друга из - за их взаимного трения или столкновений. Такое осаждение называют стесненным, а его закономерности отличаются от равномерного движения единичной частицы в среде.

Сила, движущая шарообразную частицу диаметром d, выражается разностью между ее массой и выталкивающей архимедовой силой, равной массе жидкости в объеме частицы:

,

где ρтв и ρ – плотности твердой частицы и жидкости; g – ускорение свободного падения. Сила сопротивления среды R движущемуся в ней телу может быть выражена уравнением закона сопротивления:

Скорость равномерного движения тела в жидкости, называемую скоростью осаждения ωос, можно найти из условия равенства сил движения и сопротивления:

откуда

При ламинарном движении тела в жидкости (область действия закона Стокса) приблизительно при Re<2000

Отсюда после подставления получаем:

Для нешарообразных частиц ωос меньше на значение коэффициента формы, который находится в пределах 0,77-0,43. Таким образом, скорость осаждения является функцией диаметра частиц, их формы, разности плотностей твердой фазы и жидкости и вязкости жидкости.

В отличие от свободного при стесненном движении в процессах осаждения более мелкие частицы тормозят движение более крупных, а частицы больших размеров увлекают за собой мелкие частицы, ускоряя их движение. Возникает коллективное осаждение частиц с близкими скоростями в каждом сечении аппарата.

С гидродинамической точки зрения стесненное осаждение аналогично поведению кипящего (псевдоожиженного) слоя, а скорость псевдоожижения, при которой нарушается неподвижность слоя, увеличивается его высота и порозность (отношение объема жидкости к сумме объемов жидкости и частиц), равна скорости стесненного осаждения ωст. Этот важный вывод позволяет использовать экспериментальные данные, полученные при изучении обоих процессов для описания каждого из них, так как в настоящее время отсутствуют надежные данные по коэффициентам формы для полидисперсных систем и по влиянию движения среды на скорость отстаивания при отклонении падающих частиц от вертикального направления движения.

17.  Сопоставить случаи применения барабанного вакуум-фильтра и фильтр-пресса. В каких случаях применяют барабанный вакуум-фильтр с внутренней фильтрующей поверхностью, а в какой – с наружной?

Фильтр-пресс – это периодически действующее устройство для разделения дисперсных систем, содержащих жидкую и твердую фазы – суспензий, шламов – путем создания гидравлического давления фильтруемой субстанции на статическую фильтровальную перегородку внутри набора замкнутых, жестко ограниченных фильтровальных камер с помощью подающего насоса. При этом твердая фаза задерживается внутри камер (образуется так называемый “кек”), а жидкая фаза (фильтрат), проникая сквозь фильтровальные перегородки, вытекает через отводные каналы.

Фильтр-прессы – одни из самых универсальных и простых конструкций фильтров периодического действия. Они наиболее пригодны для разделения небольших количеств разнообразных суспензий в тех случаях, когда требуется получить достаточно обезвоженный осадок.

Из фильтров непрерывного действия наиболее универсальными являются барабанные вакуум-фильтры, пригодные для одновременного полуения хорошо промытого и высушенного осадка и концентрированного фильтрата.

Вакуумными фильтрами называются фильтры, в которых отфильтрованная жидкость поступает в зону, находящуюся под давлением ниже атмосферного. В зоне, где находится исходная суспензия, давление соответствует атмосферному и поэтому работа вакуумных фильтров ограничена максимальной разностью давления в 0,1 МПа.

Поскольку исходная суспензия находится в ванне фильтра под атмосферным давлением, ее можно подавать насосом с небольшим давлением или под действием силы тяжести. Фильтрат же должен передаваться из зоны с давлением ниже атмосферного в приемник, находящийся под атмосферным давлением. Для этой операции используется насос или барометрическая труба. На вакуум-фильтрах не рекомендуется разделять суспензии, жидкая фаза которых представляет собой высококонцентрированные растворы солей, кристаллизующихся при прохождении фильтрующей перегородки и забивающих ее поры. Не подлежат обработке на вакуумных фильтрах (за исключением специальных конструкций) легколетучие и огне-взрывоопасные суспензии.

Барабанные вакуум-фильтры общего назначения с наружной фильтрующей поверхностью наиболее просты и надежны в эксплуатации. Фильтры предназначены для разделения суспензий с частицами твердой фазы более или менее однородной дисперсности и с невысокой .скоростью осаждения.

Ограничением применения барабанного фильтра с наружной фильтрующей поверхностью является быстрое осаждение грубой фракции или всей твердой фазы суспензии (со скоростью >18 мм/с). Для предотвращения смывания осадка с поверхности барабана мешалка перемещается в ванне фильтра с небольшой скоростью. Поэтому, если грубые частицы суспензии оседают на дно и суспензия в ванне по мере фильтрования сгущается, то постепенно нарушается нормальная работа фильтра.

Другое ограничение применения барабанного вакуум-фильтра— недостаточная скорость фильтрования суспензии. Скорость вращения барабана фильтров общего назначения можно регулировать в пределах 0,1—2 об/мин. При угле фильтрования 135° максимальное время фильтрования 3,75 мин, а при угле 100° — 2,8 мин. Если скорость фильтрования низка и за это время образуется слой осадка толщиной менее 5 мм, то он плохо отдувается от ткани (воздух прорывается через тонкий слой осадка или трещины в нем), не снимается ножом и замазывает ткань. Кроме того, при разделении малоконцентрированных суспензий, содержащих высокодисперсные твердые частицы, происходит быстрое закупоривание пор фильтрующей перегородки. В результате производительность снижается и в конце концов становится настолько низкой, что применение фильтра не рентабельно.

Помимо барабанных вакуум-фильтров общего назначения имеется много специализированных конструкций. Так, для фильтрования суспензий со значительной скоростью осаждения твердой фазы (более 18 мм/с) применяют барабанные вакуум-фильтры с верхней подачей суспензии или с внутренней фильтрующей поверхностью.

Барабанные вакуум-фильтры с верхней подачей суспензии имеют устройство, обеспечивающее размещение зоны фильтрования на верхней, относительно небольшой части поверхности барабана.

Барабанные вакуум-фильтры с внутренней фильтрующей поверхностью представляют собой горизонтальный цилиндр (барабан), закрытый с одной стороны сплошной стенкой, а с другой — кольцевым бортом. Внутренняя поверхность барабана имеет ячейки, покрытые фильтровальной тканью. Суспензия заливается внутрь барабана и заполняет его нижнюю часть до уровня, соответствующего высоте кольцевого борта. При вращении барабана на каждой ячейке последовательно протекают операции фильтрования и просушки осадка воздухом. Промывка осадка не проводится. В верхней части барабана осадок отдувается воздухом и падает на транспортер или другое устройство для его удаления. Ткань регенерируется продуваемым через нее воздухом или паром.

18.  Перечислите виды центрифуг

Центрифуги классифицируют: по величине фактора разделения; по физической сущности процесса - осадительные и фильтрующие; по характеру работы - периодические и непрерывные; по расположению ротора; по способу выгрузки осадка.

По фактору разделения промышленные центрифуги условно делят на: нормальные центрифуги с фактором разделения Фр<3500; скоростные или сверхцентрифуги с фактором разделения Фр> 3500.

По способу выгрузки осадка из барабана различают центрифуги с выгрузкой ручной, гравитационной, шнековой, ножами и скребками, пульсирующими поршнями и др.

По конструкции опор и расположению оси барабана центрифуги делят на подвесные вертикальные (на колонках), вертикальные стоячие (с подпертым валом), горизонтальные, наклонные

По организации процесса разделяют периодически и непрерывно действующие центрифуги К доле максимально распространенных периодически функционирующих центрифуг относятся центрифуги, подвешенные на трех колонках (трехколонные), и подвесные центрифуги с верхней опорой.

Отлично показали себя в промышленности автоматические подвесные центрифуги с нижней выгрузкой осадка, данные установки различаются стабильностью и некоторой свободой колебаний барабана, а также относительно свободной и быстрой выгрузкой осадка.

19.  Написать уравнение для расчета мощности на перемешивание жидкостей мешалками. Критериальная форма записи этого уравнения. Перечислить области применения для перемешивания лопастных, пропеллерных, турбинных, якорных и ленточных мешалок, а также сжатого воздуха

Механическое перемешивание осуществляется с помощью мешалок, которым сообщается вращательное движение либо непосредственно от электродвигателя, либо через редуктор или клиноременную передачу.

Задача внешнего обтекания тел в условиях перемешивания может быть решена с помощью уравнений Навье-Стокса и неразрывности потока. Для решения этой задачи используют теорию подобия. Для вынужденного стационарного движения жидкости обобщённое уравнение гидродинамики имеет вид

Уг = а (Акмб Кумб Г1б Г2б …)

где: Eu – критерий Эйлера; Frм – критерий Фруда; Reм – критерий Рейнольдса,

Г1, Г2, – симплексы геометрического подобия.

,

где n – число оборотов мешалки в единицу времени (частота вращения); d - диаметр мешалки.

При использовании диаметра мешалки d, как определяющего линейный размер:

; ;

Мощность на валу мешалки N пропорциональна силе Р, приложенной к валу мешалки с окружной скоростью ωокр, т.е.

где S пропорциональна d2 .

Подставив Δр в выражение для Euм, получим:

Критерий Euм, выраженный в таком виде, называют критерием мощности и обозначают через KN.

Критериальное уравнение для мешалки принимает вид

ЛТ = а(Кум Акм б Г 1 б Г2 б …)

Или

KN = AReмmFrмn Г1pГ2q

Численные значения коэффициентов A , n, m, p, q для подобных мешалок устанавливают экспериментально. В специальной литературе приведены значения этих коэффициентов для наиболее распространённых типов мешалок

Лопастными мешалками называются устройства, состоящие из двух или большего числа лопастей прямоугольного сечения, закрепленных на вращающемся вертикальном или наклонном валу. К лопастным мешалкам относятся также и некоторые мешалки специального назначения: якорные, рамные и листовые. Основные достоинства лопастных мешалок — простота устройства и невысокая стоимость изготовления. К недостаткам мешалок этого типа следует отнести низкое насосное действие мешалки (слабый осевой поток), не обеспечивающее достаточно полного перемешивания во всем объеме аппарата. Вследствие незначительности осевого потока лопастные мешалки перемешивают только те слои жидкости, которые находятся в непосредственной близости от лопастей мешалки. Развитие турбулентности в объеме перемешиваемой жидкости происходит медленно, циркуляция жидкости невелика. Поэтому лопастные мешалки применяют для перемешивания жидкостей, вязкость которых не превышает 103 мН∙ сек/м2.

Для перемешивания жидкостей вязкостью не более 104 мН∙сек/м2, а также для перемешивания в аппаратах, обогреваемых с помощью рубашки или внутренних змеевиков, в тех случаях, когда возможно выпадение осадка или загрязнение теплопередающей поверхности, применяют якорные мешалки. Они имеют форму, соответствующую внутренней форме аппарата, и диаметр, близкий к внутреннему диаметру аппарата или змеевика. При вращении эти мешалки очищают стенки и дно аппарата от налипающих загрязнений,

Рабочей частью пропеллерной мешалки является пропеллер – устройство с несколькими фасонными лопастями, изогнутыми по профилю гребного винта. Наибольшее распространение получили трехлопастные пропеллеры. На валу мешалки, который может быть расположен вертикально, горизонтально или наклонно, в зависимости от высоты слоя жидкости устанавливают один или несколько пропеллеров. Вследствие более обтекаемой формы пропеллерные мешалки при одинаковом числе Рейнольдса потребляют меньшую мощность, чем мешалки прочих типов К достоинствам пропеллерных мешалок следует отнести также относительно высокую скорость вращения и возможность непосредственного присоединения мешалки к электродвигателю, что приводит к уменьшению механических потерь.

Пропеллерные мешалки создают преимущественно осевые потоки перемешиваемой среды и, как следствие этого, ‒ большой насосный эффект, что позволяет существенно сократить продолжительность перемешивания. Вместе с тем пропеллерные мешалки отличаются сложностью конструкции и сравнительно высокой стоимостью изготовления. Их эффективность сильно зависит от формы аппарата и расположения в нем мешалки. Пропеллерные мешалки следует применять в цилиндрических аппаратах с выпуклыми днищами. При установке их в прямоугольных баках или аппаратах с плоскими или вогнутыми днищами интенсивность перемешивания падает вследствие образования застойных зон.

Для жидкостей с особо высокими вязкостями (до 100 Па·с, т.е. 105 сП) и при больших объемах применяются ленточные мешалки. Такие мешалки обычно имеют две спирали (наружную и внутреннюю) с противоположным углом наклона винтовой линии, что создает осевую циркуляцию жидкости в аппарате. Работать эти мешалки могут как в вертикальных, так и в горизонтальных аппаратах.

Турбинные мешалки имеют форму колес водяных турбин с плоскими, наклонными или криволинейными лопатками, укрепленными, как правило, на вертикальном валу. В аппаратах с турбинными мешалками создаются преимущественно радиальные потоки жидкости. При работе турбинных мешалок с большим числом оборотов наряду с радиальным потоком возможно возникновение тангенциального (кругового) течения содержимого аппарата и образование воронки. В этом случае в аппарате устанавливают отражательные перегородки. Закрытые турбинные мешалки в отличие от открытых создают более четко выраженный радиальный поток. Закрытые мешалки имеют два диска с отверстиями в центре для прохода жидкости; диски сверху и снизу привариваются к плоским лопастям. Жидкость поступает в мешалку параллельно оси вала, выбрасывается мешалкой в радиальном направлении и достигает наиболее удаленных точек аппарата. Турбинные мешалки обеспечивают интенсивное перемешивание во всем объеме аппарата. При больших значениях отношения высоты к диаметру аппарата применяют многорядные турбинные мешалки. Мощность, потребляемая турбинными мешалками, работающими в аппаратах с отражательными перегородками, при турбулентном режиме перемешивания практически не зависит от вязкости среды. Поэтому мешалки этого типа могут применяться для смесей, вязкость которых во время перемешивания изменяется.

Турбинные мешалки широко применяют для образования взвесей (размер частиц для закрытых мешалок может достигать 25 мм, растворения, абсорбции газов и интенсификации теплообмена. Для перемешивания в больших объемах (например, при гомогенизации жидкостей в хранилищах, объем которых достигает 2500 м3 и более) турбинные мешалки менее пригодны, чем пропеллерные мешалки

Страницы: 1, 2, 3, 4


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.