рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Курсовая работа: Проектирование мотор-редуктора

По табл. 7 [2] выбираем призматическую шпонку со скругленными концами (по ГОСТ 23360-78 исполнение 1, рис. 8.1):

b = 16 мм. – ширина шпонки,

h = 10 мм. – высота шпонки,

t = 6 мм. – глубина паза на валу,

t1 = 4,3 мм. – глубина паза на муфте,

Радиус закругления пазов 0,16<r<0,25(мм) (интерполяция),

Учитывая длину ступицы зубчатого колеса = 70мм, принимаем длину шпонки мм.

Расчетная длина шпонки:

мм.

Принимая материал шпонки сталь 45 с пределом текучести МПа, допускаемое напряжение МПа для стали.

Проверим соединение на смятие:

=16,78 МПа.

 – прочность шпоночного соединения обеспечена.

Напряжение среза:


8,39 МПа.

где  - площадь среза шпонки:

мм2.

 – прочность шпоночного соединения обеспечена.


9. Уточненный расчет валов

9.1 Построение эпюр изгибающих и крутящих моментов

При проверочном расчете валы рассматривают как прямые брусья, лежащие на шарнирных опорах и работающие на изгиб и кручение. На данном этапе учитываем не только крутящий, но и изгибающие моменты. Выполняется на этапе эскизной компоновки, когда предварительно выбраны подшипники, известна длина всех участков вала, известно положение всех деталей на валу, рассчитаны силы, действующие на вал.

Чертятся расчётные схемы вала в двух плоскостях (рис. 9.1, 9.2). По известным силам, действующих на насаженные на вал детали и расстояниям до опор строятся эпюры изгибающих моментов в горизонтальной и фронтальной плоскостях. Затем вычисляется суммарный изгибающий момент для каждого участка вала. Далее строятся эпюры нормальных и касательных напряжений:

9.1.1 Ведущий вал (рис. 9.1):

Плоскость YZ

Плоскость XZ


Суммарный изгибающий момент:

 


Крутящий момент:

Опасным сечением является сечение

2 .

Максимальные напряжения изгиба:

МПа

Максимальные напряжения кручения:

МПа

Условие прочности:

;

Допускаемые напряжения можно принять:

мПа


где: – предел текучести материала вала по табл. 6.1 [3];

*=2-3, рекомендуемый коэффициент запаса прочности по пределу текучести.

Максимальное эквивалентное напряжение:

– условие выполняется.


9.1.2 Ведомый вал (рис. 9.2):

Плоскость YZ

Плоскость XZ

Суммарный изгибающий момент:

Крутящий момент:


Опасным сечением является сечение

2 .

Максимальные напряжения изгиба:

МПа

Максимальные напряжения кручения:

МПа

Условие прочности:

;

Допускаемые напряжения можно принять:

мПа

где: – предел текучести материала вала по табл. 6.1 [3];

*=2-3, рекомендуемый коэффициент запаса прочности по пределу текучести.

Максимальное эквивалентное напряжение:


– условие выполняется.

9.2 Проверка усталостной прочности валов

9.2.1 Ведущий вал

Опасным сечением является сечение

2 - .

Коэффициент запаса прочности S:

;

- где =1,5–2,5 минимально допустимое значение;

Коэффициенты запаса по нормальным и касательным напряжениям:

;

;

Пределы выносливости вала в рассматриваемом сечении:

МПа; МПа;


где; – пределы выносливости гладких образцов при симметричном цикле изгиба и кручения табл. 6.1[3];

Коэффициенты снижения предела выносливости:

;

;

где; – эффективные коэффициенты концентрации напряжений – табл. 6.6 [3];

 – коэффициенты влияния абсолютных размеров поперечного сечения табл. 6.2 [3];

; – коэффициенты влияния качества поверхности табл. 6.3 [3];

 – коэффициент влияния поверхностного упрочнения табл. 6.4 [3];

Коэффициент влияния асимметрии цикла для рассматриваемого сечения вала:

где – коэффициент чувствительности материала к асимметрии цикла напряжений табл. 6.1 [3].


- условие прочности выполняется.

9.2.2 Ведущий вал

Опасным сечением является сечение 2 - .

Коэффициент запаса прочности S:

;

- где =1,5–2,5 минимально допустимое значение;

Коэффициенты запаса по нормальным и касательным напряжениям:

;

;

Пределы выносливости вала в рассматриваемом сечении:

МПа;

МПа;

где; – пределы выносливости гладких образцов при симметричном цикле изгиба и кручения табл. 6.1[3];

Коэффициенты снижения предела выносливости:


;

;

где; – эффективные коэффициенты концентрации напряжений – табл. 6.6 [3];

 – коэффициенты влияния абсолютных размеров поперечного сечения табл. 6.2 [3];

; – коэффициенты влияния качества поверхности табл. 6.3 [3];

 – коэффициент влияния поверхностного упрочнения табл. 6.4 [3];

Коэффициент влияния асимметрии цикла для рассматриваемого сечения вала:

где – коэффициент чувствительности материала к асимметрии цикла напряжений табл. 6.1 [3].

- условие прочности выполняется.


9.3 Выбор посадок и расчет полей допусков

9.3.1 Посадка зубчатого колеса на вал  Ø55 мм по ГОСТ 25347-82

Определяем предельные отклонения, предельные размеры, допуски, предельные зазоры или натяги, допуск посадки (рис. 9.3).

9.3.2 Посадка в системе отверстия, вид посадки с натягом

Номинальный размер мм.

9.3.3 Детали соединения

·  отверстие. Ø55, квалитет 7

·  вал Ø55, квалитет 6

9.3.4 Предельные отклонения ГОСТ25347-82

·  отверстие ;

·  ;

·  вал ;

·  .

9.3.5 Обозначения на чертежах

9.3.6 Предельные размеры (мм)

·  отверстие ;

·  ;

·  .

9.3.7 Допуски (мм)

·  отверстие ;

·  ;

·  .

9.3.8 Предельные зазоры (мм)

·  ;

·  ;

·  ;

·  ;

.

9.3.9 Допуск посадки (мм)

·  ;

·  .

9.4 Шероховатость поверхностей валов

Поверхности валов должны иметь шероховатость, указанные в таблице 9.1.

Таблица 9.1 Шероховатость поверхностей валов

Элементы валов Шероховатость, Ra, мкм
Неподвижные соединения с посадкой скольжения 0,2 – 0,05
Соединения с переходными посадками 0,4 – 0,1
Прессовые и конусные соединения 0,4 – 0,05
Упорные буртики неподвижных цилиндрических соединений (рабочие поверхности) 1,6 – 0,4
Посадки подшипников качения на валу при классе точности подшипника:
нормальном 0,4 – 0,1
Шпоночно-пазовые соединения (рабочие грани пазов) 3,2 – 0,8
Резьбы наружные 3,2 – 1,6
Уплотнения цилиндрические контактные с мягкими элементами манжеты (рабочие поверхности валов) 0,1 – 0,05
Свободные поверхности деталей (торцы и ненесущие цилиндрические поверхности валов, фаски и т.п.):
малонагруженных 6,4 – 1,6
нагруженных высокими цикличными нагрузками 1,6 – 0,2
Галтели:
неответственного назначения 3,2 – 1,6
деталей, нагруженных высокими цикличными нагрузками 0,4 – 0,1

10. Выбор способа смазки и смазочного материала для всех узлов мотор-редуктора

10.1 Смазывание зубчатой передачи

Смазывание зубчатых передач служит для: уменьшения потерь мощности на трение, снижения скорости износа трущихся поверхностей передач, предохранения от заедания, защиты от коррозии, отвода теплоты и продуктов износа от трущихся поверхностей, уменьшения шума.

Для смазки передач при окружных скоростях до 12,5 м/сек применяем картерное смазывание: в картер заливают масло, образующее масляную ванну. Вязкость масла выбирают тем выше, чем больше нагрузка и меньше скорость.

По таблице 2.10 [2] выбираем рекомендуемый сорт индустриального масла соответствующей вязкости (И-Г-А-46).

Зубчатые колеса рекомендуют погружать в масло на глубину 4…5 модулей. При низких скоростях допускается погружение до 0,25 диаметра колеса. Принимаем мм.

10.2 Смазывание подшипников

Если смазывание разбрызгиванием невозможно из-за малых окружных скоростей зубчатых колес (менее 4 м/сек), применяют пластичную смазку, например ЦИАТИМ-201 ГОСТ 6267-74, ЛИТОЛ-24 ГОСТ 21150-87. При этом виде смазки подшипников в подшипниковых узлах предусматривают некоторое пространство для заполнения смазкой (примерно 1/4 ширины подшипника) и маслоудерживающие шайбы. Смазочный материал набивают в подшипник вручную при снятой крышке подшипникового узла на несколько лет работы. Смену смазочного материала производят при ремонте.


11. Конструирование корпуса редуктора

11.1 Определение элементов корпуса

К корпусным деталям относят детали, обеспечивающие взаимное расположение деталей узла и воспринимающие основные силы, действующие в машине или в механизме. Так же корпуса защищают детали и узлы от загрязнения, и является емкостью для жидкой смазки.

Корпусные детали обычно имеют довольно сложную форму, поэтому их изготавливаем литьем. Для изготовления корпусных деталей используем серый чугун СЧ 15-32. Корпусная деталь состоит из стенок, ребер, бобышек, фланцев и других элементов, соединенных в единое целое.

При конструировании литой корпусной детали стенки следует по возможности выполнять одинаковой толщины. Толщина стенки, обеспечивающая необходимую прочность и жесткость, а так же хорошее заполнение формы жидким металлом:

, принимаеммм.

где – вращающий момент на выходном (тихоходном) валу, Н∙м.

Толщина стенки крышки:

.

принимаем мм.

Радиусы сопряжений стенок (для α = 90º) по табл. 11.1. Размеры элементов сопряжения стенок разной толщины в табл. 11.2. Размеры посадочных мест под крепежные детали даны в табл. 11.3.


Таблица 11.1 Радиусы сопряжений, мм

Таблица 11.2 Размеры элементов сопряжения стенок разной толщины, мм

Таблица 11.3 Размеры посадочных мест под крепежные детали, мм

Размеры фланцев для крепления корпуса к раме (фундаменту) и крепления крышки к корпусу даны в таблице 11.4.


Таблица 11.4 Размеры фланцев корпуса и крышки редуктора, мм

Фланцы для крепления к фундаменту

Диаметр болта крепления к раме d1

16

Толщина фланца

18

Ширина фланца S1

50
Фланцы корпуса и крышки в районе подшипниковых узлов

Диаметр болта крепления крышки к корпусу d2

12

Ширина фланца S2

42

Страницы: 1, 2, 3, 4, 5


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.