рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Курсовая работа: Аппаратурно-технологическая схема получения глинозема на участке кальцинации по способу Байера

Управление работой дозатора может осуществляться в трех режимах:

- автоматический – блок управления дозатором управляет скоростью движения ленты, поддерживая заданный прокальщиком тепловой режим работы печи (сигнал U4 прямо пропорционален заданной прокальщиком температуре отходящих газов перед батарейными циклонами);

- полуавтоматический – блок управления дозатором управляет скоростью движения ленты, поддерживая заданную прокальщиком производительность дозатора (сигнал U4 прямо пропорционален заданной производительности);

- ручной – скоростью движения ленты (т.е. производительностью дозатора) управляет прокальщик, непосредственно изменяя частоту вращения электродвигателя; при этом блок управления дозатором работает лишь как индикатор производительности (сигнал U4 отсутствует).

В процессе эксплуатации необходимо:

- следить за состоянием хода и натяжением ленты, которые регулируются натяжным барабаном в направляющих с помощью болтов, которые при вращении упираются в корпуса подшипников;

- следить за работоспособностью редукторов и подшипниковых узлов, барабанов,роликов привода дозатора и шнека, визуально контролировать шум, вибрацию и нагрев приводов, уровень смазки;

- следить за работоспособностью цепной передачи дозаторов СБ-111;

- производить смазку подшипниковых узлов согласно схемы смазки.

3.1.3 Устройство и принцип работы печи кальцинации

Печь кальцинации предназначена для обезвоживания гидроксида алюминия при высокой температуре с целью получения достаточно негигроскопичного глинозёма.

Печь состоит из металлического корпуса, сваренного из 55 царг. На корпусе печи пять подбандажных царг, толщиной 60 мм. На обечайку (царгу) одевается бандаж диаметром 5400 мм, толщиной 300÷350 мм, вес 37÷40 т.

Опорное устройство печи состоит из бандажа и роликов. Массивные стальные кольца, охватывающие корпус печи, называются бандажами, которые при вращении печи опираются и катятся по двум роликам диаметром 1700÷1800 мм.

Для центровки по корпусу между бандажами и царгой вставляются центровочные пластины толщиной 30, 16 и 3 мм. От смещения в осевом направлении, бандаж удерживается сегментами и косынками. Учитывая тепловое расширение, между внутренним диаметром бандажа и посадочным диаметром имеется зазор 3÷4 мм. При работе печи бандаж может проворачиваться относительно корпуса печи, заклинивание (отсутствие проскальзывания) не допустимо. Всего на печи пять бандажей.

Подача материала в печь осуществляется по пыле проводу, который проходит через всю зону сушки от передней стенки холодной головки, за шайбу установленную после спирали. На горячем конце к торцу печи крепятся болтами 36 сегментов из жароупорной стали Х18Н9Т, на печи – сваркой 32 сегмента. Печи кальцинации оснащены главным и вспомогательным приводами. Главный привод состоит из электрического двигателя, соединенного через пальчиковую муфту с редуктором.

В печи футеровкой, на выходе материала, выполнен конус для увеличения времени нахождения материала в зоне высоких температур. В нижней части печи находится горячая головка, связанная с пересыпной течкой, которая в свою очередь с полостью холодильника.

Для исключения подсоса воздуха в систему на горячем конце печи установлено лабиринтное уплотнение, в холодном – резиновое.

Для равномерного износа поверхностей катания бандажей и опорных роликов необходимо выполнение следующих условий:

- печь в течение смены должна совершить движение от нижнего контрольного ролика до верхнего и обратно.

Основное перемещение печи осуществляется:

- вниз - смазывание поверхности катания опорного ролика смазкой;

- вверх - смыванием (сушкой) поверхности катания ролика керосином.

Все работы по перемещению печи производят со стороны выката опорного ролика (слева по ходу материала).


3.1.4 Устройство и принцип работы мазутных форсунок

Мазут в печь подаётся и сжигается в распылённом виде под давлением до 1,0 МПа при помощи вспомогательной или механической форсунок.

Вспомогательная форсунка Шухова применяется при розжиге, остановке или горячем резерве печей. В собранном виде форсунка состоит из двух конических труб, головки для крепления форсунки. Во вкладыше имеется внутренний канал диаметром до 10мм для прохода мазута и восьми отверстий диаметром до 4 мм для прохода воздуха или пара. Внутренняя труба имеет боковое отверстие, входящее в корпус форсунки, к которому прикреплён мазутный патрубок. В наружную трубу через патрубок подводится пар или воздух. Проходя через отверстия, при выходе пар (воздух) увлекает за собой мазут и распыляет его. От размера паровой (воздушной) щели зависит качество распыления и расход пара (воздуха), который должен быть в пределах 0,5÷1,0 мм. Пар (воздух) подаётся на форсунку под давлением 0,5÷0,7 МПа, мазут под давлением 0,4÷0,6 МПа, при температуре ≈100÷110ОС. Факел, при горении вспомогательной форсунки, должен быть узким и длинным. К трубопроводам мазута и воздуха форсунка крепится двумя противоположенными зажимами. На рисунке Г.1 представлена схема форсунки Шухова.

Для стабильной работы печи в рабочем состоянии применяется форсунка с механическим распылением. Форсунка представляет собой трубу, на конце которой имеется распределительный наконечник (головка) с выходным отверстием 6÷8 мм. Корпус форсунки имеет боковое отверстие, к которому крепится мазутный патрубок с фланцем.

Головка состоит из вкладыша с двумя тангенциальными отверстиями и корпуса головки с внутренней резьбой, для крепления к трубе форсунки. Форсунка при помощи фланцевого соединения крепится к мазутопроводу. Мазут, подаваемый к форсунке под давлением до 1,0 МПа, проходит через тангенциальные отверстия, завихряется и через выходные отверстия выходит распылённым. Корень факела имеет форму полого конуса с основанием у форсунки. В соответствии с рисунком Г.2 представлена схема механической форсунки.

3.1.5 Устройство и принцип работы мазутоподогревателя

Для подогрева мазута установлены два трубчатых подогревателя. Подогреватель предназначен для подогрева мазута марок М-40, М-100 конденсирующимся водяным паром до температуры ≈100÷130о С. Технические характеристики мазутоподогревателя представлены в таблице 3.

Технология нагрева заключается в интенсивном режиме перемешивания мазута путем применения турбулентных элементов, которые кроме основного назначения используются для очистки внутренних поверхностей мазутных трубок от трудноудаляемых отложений, которые резко снижают передачу тепла пара через стенки трубок. Очистка осуществляется за один проход при извлечении турбулентных вставок.

Таблица 3 - Техническая характеристика мазутоподогревателя

Наименование параметров Показатели
Производительность секции, т/ч 30

Степень нагрева мазута, оС

40÷50

Давление:

-  пара, МПа

-  мазута, МПа

до 1,6

до 4,0

Вместимость:

-  корпуса, м3

-  трубной части, м3

0,253

0,172

Допустимая температура нагрева стенки, оС

150

Подогреватель мазута в соответствии с рисунком Д.1 представляет собой теплообменный аппарат кожух отрубного типа. Основными узлами подогревателя являются корпус, состоящий из последовательно соединенных труб диаметром 150 мм, в котором установлены трубные системы с завихрителями. Трубная система состоит из пучков труб диаметром 25 мм, закрепленных в трубных досках при помощи сварки. В каждую трубу трубного пучка установлены стальные стержни с завихрителями, для перемешивания мазута при его движении по трубной системе. Фланцевые разъемы корпуса подогревателя обеспечивают доступ к любому трубному пучку для очистки его поверхности от загрязнений.

Греющий пар подается в корпус подогревателя противотоком к направлению движения мазута. Слив конденсата осуществляется в нижней части корпуса через конденсатные патрубки.

Для бесперебойной работы форсунок установлены перед подогревателями мазутные фильтры, обеспечивающие хорошую фильтрацию мазута, состоящие из корпуса цилиндрической формы, внутри которого установлена сетка, которая удерживает механические примеси размером свыше 2,0 мм.

3.1.6 Устройство и принцип работы холодильника

Барабанные холодильники применяются для охлаждения глинозёма до температуры не менее 200оС (холодильники кипящего слоя не менее 150оС) и отделения шамотной крошки с целью дальнейшей транспортировки глинозёма на склад готовой продукции. Технические характеристики барабанных холодильников представлены в таблице 4.

Барабанный холодильник – это цилиндрический барабан, опоясанный двумя бандажами, опирающиеся на два опорных ролика диаметром 1200 мм.

Холодильник имеет венцовую и подвенечную шестерни и редуктор с электродвигателем, посредством которого он приводится в движение.

Внутри холодильника приварены стальные полки. С внешней стороны холодильник орошается оборотной водой. Протяженность зоны орошения 20 м, поделена на две части: четырех метровую и шестнадцати метровую. Зона орошения укрыта кожухом. Привод и опорные устройства холодильника аналогичны печам. В холодном конце холодильника имеется устройство (сито с ячейками диаметром 2 мм) для отсеивания шамотной крошки и других механических примесей от глинозема. В горячий конец холодильника входит пересыпная течка из печи.

Осевое перемещение холодильника ограничивается контрольными роликами.

В процессе работы холодильника требования к обслуживанию аналогичные как к печи, кроме того необходимо:

- следить за равномерным водяным орошением всех зон (особенно четырех метровой);

- следить за бесперебойным охлаждением первого бандажа холодильника;

- следить за состоянием кожуха орошения, резинового уплотнения.

На печах №4 и 5 установлены холодильники кипящего слоя (ХКС).

Основными узлами холодильника №4 являются:

- шамотоотделитель;

- пневможелоб;

- холодильник кипящего слоя.

Основными узлами холодильника №5 являются:

- шамотоотделитель;

- течка;

- холодильник кипящего слоя.

Таблица 4 - Техническая характеристика барабанного холодильника

Наименование параметров Показатели
Длина холодильника № 1, м 37,5
Длина холодильника №№ 2, 3, м 38,5
Диаметр барабана, м 3,6

Число оборотов, мин –1

3
Уклон, % 2
Длина зоны охлаждения, м 20
Количество опор, шт 2

Электродвигатель:

-  мощность, кВт

-  число оборотов, мин –1

75

985 - № 1; 750 - № 2,3

Типы редукторов:

-  холодильник № 1

-  холодильник № 2

-  холодильник № 3

ЦТ2-1900

DESSAU

FLENDER

Передаточное число редукторов:

-  холодильник № 1

-  холодильник № 2, 3

54,46

40

Шамотоотделитель предназначен для отделения шамота и шамотной крошки от глинозёма, выгруженного из вращающейся печи, а также для создания гидравлического затвора, препятствующего прохождению воздуха из холодильника непосредственно в горячую головку печи.

Шамотоотделитель представляет собой металлический короб прямоугольного сечения, футерованный огнеупорным кирпичом, и состоящим из классификационной камеры, пережима, приемного бункера и разгрузочного устройства.

Классификационная камера в верхней своей части разделена на две секции, одна из которых соединена с течкой вращающейся печи, а другая – с пневможелобом (течкой) через разгрузочное окно, расположенное в верхней части секции. В каждую секцию камеры подаётся сжатый воздух на создание кипящего слоя. В нижней части перегородки имеется отверстие для перемещения глинозема из первой секции во вторую. Во второй секции у разгрузочного окна установлены трубки с отверстиями, к которым подведён сжатый воздух.

В пережиме размещено аэрирующее устройство. В пережим воздух подаётся для охлаждения трубки и для отдувки глинозёма при разгрузке шамота и шамотной крошки в приёмный бункер. Работа аппарата основана на принципе создания "кипящего слоя" глинозёма, из которого при заданной скорости прохождения воздуха имеет место выпадения из слоя частиц, скорость кипения которых больше заданной скорости.

Горячий глинозём из вращающейся печи поступает в "кипящий слой" первой секции классификационной камеры, где происходит отделение крупных кусков шамота от глинозема, затем через отверстие в нижней части перегородки глинозем перетекает во вторую секцию, где проходит дополнительная классификация и отделение шамота и шамотной крошки. Отделённый в первой и второй секциях шамот и шамотная крошка собираются в конусной части классификационной камеры над пережимом. В пережиме периодически производится отдувка глинозёма, увлекаемого вместе с шамотом и шамотной крошкой. Разница скоростей, отношение которых в секциях классификационной камеры и в пережиме составляет примерно 1:10, что обеспечивает эффективное отделение шамота и шамотной крошки крупнее 3 мм.

Разгрузка глинозёма из шамотоотделителя осуществляется через разгрузочное окно с верхнего кипящего слоя второй секции в течку круглого сечения (пневможолоб), по которой глинозём направляется в приемную камеру холодильника КС. Таким образом, глинозём в аппарате совершает зигзагообразные движение, что способствует эффективному отделению шамота и шамотной крошки от глинозёма и создаёт надёжный затвор между холодильником КС и печью. Шамот и шамотная крошка из приемного бункера выгружается через разгрузочный люк.

Пневможелоб предназначен для транспортировки глинозёма из шамотоотделителя в холодильник КС и представляет собой прямоугольный металлический короб, футерованный огнеупорным кирпичом и разделён на 4 секции. Внутри пневможелоба размещены беспровальные колпачковые подины, которые отделяют рабочее пространство от воздухораспределительных камер. Пневможелоб работает на принципе " кипящего слоя " с перекрестным током воздуха и материала, при общем направлении движения последнего. Воздух на кипение подаётся в воздухораспределительные камеры по отдельному воздуховоду от вентилятора ВМ–17.

Холодильник кипящего слоя представляет собой металлический короб, футерованный огнеупорным кирпичом и разделённый внутри перегородками на 9 секций, из которых первые шесть по ходу движения материала, являются собственно холодильником с воздушным охлаждением, а последние три – доохладители (с водо-воздушным охлаждением материала). В них охлаждение глинозёма осуществляется как за счёт воздуха, так и за счёт воды, подаваемой в трубчатые теплообменники, которые обеспечивают охлаждение глинозёма до ≈80÷100оС.

Первые четыре секции разделены между собой перегородками, выполненными из огнеупорного кирпича, а остальные – металлические. Конструкция перегородок между секциями обеспечивает зигзагообразное перемещение материала в вертикальной плоскости при общем направлении его движении вдоль холодильника. Перед каждой секцией расположены воздухораспределительные камеры, в которых через коллекторную систему воздуховодов от вентилятора ВМ–17 подается воздух на образование кипящего слоя по секциям. На коллекторной системе воздуховодов установлена контрольно – измерительная аппаратура для регулирования и измерения расхода воздуха в каждую распределительную камеру. Объём воздуха, подаваемого в каждую камеру регулируется с помощью заслонок, управляемых МЭО.

Рабочее пространство холодильника от воздухораспределительных камер отделено беспровальной колпачковой подиной. Подина первых трёх секций из жароупорной стали. Общее количество колпачков 7328 штук. В соответствии с рисунком Е.1 представлена схема холодильника кипящего слоя.

Проходящий воздух через слой глинозема нагревается до температуры ≈360÷500оС, очищается в двух батареях из четырех циклонов каждая, поступает во вращающуюся печь на сжигание топлива. Пыль, уловленная в циклонах, возвращается в третью и четвёртую секции холодильника.

В трубчатые теплообменники до охладителя вода подаётся также через коллекторную систему, на которой предусматривается регулирование и измерение расхода воды по секциям трубчатых теплообменников.

Со стороны холодного конца холодильник соединён двумя торцевыми течками с камерными насосами, которые транспортируют охлаждённый глинозём на склад готовой продукции.

При работе ХКС необходимо:

- следить за отсутствием пылений по корпусу холодильника, наличием трещин в корпусе и футеровке;

- следить за работоспособностью трубчатых теплообменников, отсутствием парений, целостностью теплообменников.

Технические нарушения работы холодильника кипящего слоя, причины вызывающие их и способы устранения этих нарушений предоставлены в таблице 5.

Таблица 5 - Технические нарушения, причины вызывающие их и способы устранения этих нарушений работы холодильника кипящего слоя

Технологические

нарушения

Причины, вызывающие технологические нарушения Способы устранения технологических нарушений
Повысилось сопротивление пневможелоба  Увеличился расход воздуха в воздухораспределительные камеры  Восстановить необходимый расход воздуха
Появление свищей в корпусе шамотоотделителя Временно прекратить подачу воздуха в классификационную камеру и заварить. Подать воздух в пережим для отдувки глинозёма. Прекратить подачу воздуха в пережим
Повысилась температура глинозёма из холодильника и температура нагрева воздуха Уменьшился расход воздуха в воздухо- распределительные камеры Восстановить необходимый расход воздуха
Повысилось сопротив-ление пневможелоба и уменьшился расход воздуха в воздухорас-пределительную камеру 1Забилась воздухораспределительная подина 1 Увеличить расход воздуха в воздухораспределительную камеру и продуть подину. После продувки восстановить необходимый расход воздуха.
2 Забилась воздухораспределительная камера 2 Прекратить загрузку печи, подачу воздуха в классификационную камеру шамотоотделителя и воздухо-распределительные камеры холодильника.
2 Забилась воздухораспределительная камера 2 Прекратить загрузку печи, подачу воздуха в классификационную камеру шамотоотделителя и воздухораспределительные камеры холодильника.
Вскрыть воздухораспределительные камеры и вычистить. Осмотреть снизу воздухораспределительные падины и устранить неплотности. Закрыть люка в воздухораспределительных камерах и подать в них необходимое количество воздуха. Восстановить загрузку печи и подать воздух в классификационную камеру шамотоотделителя.
Повысилась температура глинозёма на выходе из печи Укороченный факел, повысилась степень прокалки Удлинить факел, степень прокалки привести в соответствие
Повысилась температура глинозёма на входе в холодильник Повысилась температура глинозёма на выходе из печи, увеличилась производительность Удлинить факел, привести в соответствие степень прокалки и производительность
Повысилась температура глинозёма на выходе из холодильника Уменьшился расход воды в трубчатые теплообменники доохладителя Восстановить необходимый расход воды
Повысилась температура глинозёма из холодильника и температура нагрева воздуха Уменьшился расход воздуха в воздухо- распределительные камеры Восстановить необходимый расход воздуха
Уменьшился расход воздуха по воздухораспределительным камерам холодильника и увеличилось сопротивление Забились воздухораспределительные подины или камеры Увеличить расход воздуха в воздухораспределительных камерах, постепенно прекратить подачу воздуха в них, вскрыть и вычистить. Камеры закрыть и подать необходимое количество воздуха
Увеличилось сопротивление циклонов Забились циклоны Прекратить питание, перевести печь на вспомогательный привод, отключить вентилятор и прочистить разгрузочные трубы
Не разгружается или плохо разгружается глинозём из холодильника Уменьшился расход воздуха в воздухораспределительные камеры доохладителя или лопнули трубчатые водоохлаждаемые теплообменники, в результате чего глинозём скомковался и забилась воздухораспределительная падина Проверить расход воды на входе в трубчатые теплообменники и на выходе из них. Попеременно прекращая подачу воды по секциям трубчатых теплообменников, по характерному шуму определить неисправный. Прекратить подачу воды в неисправный трубчатый теплообменник, при ремонте заменить его или заварить выявленные неплотности

3.1.7 Устройство и принцип работы вентилятора дутья

Страницы: 1, 2, 3, 4, 5, 6


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.