рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Дипломная работа: Привод торцовочного станка

Инновация – конечный результат инновационной деятельности, воплощенный в виде нового или усовершенствованного продукта, внедренного на рынке; нового или усовершенствованного технологического процесса и т.д.

Innovation (англ.) означает «введение новаций», новшеств. С момента принятия к распространению новация приобретает новое качество – становится инновацией. Процесс введения новации на рынок принято называть коммерциализацией.

Инновационная деятельность – деятельность по доведению научно-технических идей, разработок до результата, пригодного в практическом использовании. В полном объеме инновационная деятельность включает все виды научной деятельности, проектно-конструкторские, технологические, опытные разработки, деятельность по освоению новшеств в производстве и у их потребителей – реализацию инноваций.

В общем виде инновационный процесс состоит в получении и коммерциализации изобретений, новых технологий, видов продукции и услуг, решений организационно-технического, экономического, социального или иного характера и других результатов интеллектуальной деятельности и осуществляется в 4 этапа.

На первом этапе проводятся фундаментальные исследования в высших учебных заведениях, отраслевых специализированных институтах, лабораториях. Финансирование осуществляется в основном из государственного бюджета на безвозвратной основе. На втором этапе проводятся исследования прикладного характера. Они осуществляются во всех научных учреждениях и финансируются как за счет бюджета (государственные научные программы или на конкурсной основе), так и за счет заказчиков. На третьем этапе осуществляются опытно-конструкторские и экспериментальные разработки. Они проводятся как в специализированных лабораториях, КБ, опытных производствах, так и в научно-производственных подразделениях крупных промышленных организаций. Источники финансирования те же, что и на втором этапе, а также собственные средства организаций. На четвертом этапе осуществляется процесс коммерциализации, начиная от запуска в производство и выхода на рынок и далее по основным этапам жизненного цикла продукта.

Под инновационным проектом понимается процесс целенаправленного изменения или создания новой технической системы.

Проекты имеют различные уровни научно-технической значимости: модернизационный, когда конструкция прототипа или базовая технология кардинально не изменяются (расширение размерных рядов и гаммы изделий, установка более мощного двигателя, повышающая производительность станка); новаторский, когда конструкция нового изделия по виду своих элементов существенным образом отличается от прежнего (добавление новых качеств, например введение средств автоматизации или других, ранее не применявшихся в конструкциях данного типа изделий, но применявшихся в других типах изделий); опережающий, когда конструкция основана на опережающих технических решениях (введение турбореактивных двигателей, ранее нигде не применявшихся); пионерный, когда появляются ранее не существовавшие материалы, конструкции и технологии, выполняющие прежние или даже новые функции (композитные материалы, первые персональные компьютеры, ракеты, биотехнологии).

По выполняемым объемам работ и продолжительности проекты могут быть краткосрочными (1–2 года), среднесрочными (до 5 лет) и долгосрочными (более 5 лет).

Разрабатываемый в дипломной работе проект (производство торцовочного станка Т1) носит новаторский характер, так как конструкция нового станка по виду своих элементов существенным образом отличается от ранее существующих типовых станков. Проектируемый торцовочный станок Т1 предназначен для поперечной распиловки досок на планки по длине заготовок бельевых зажимов. При обработке заготовок столь малых размеров на типовых деревообрабатывающих станках происходит перерасход электроэнергии, мощности. Главной целью проекта было уменьшение затрат на электроэнергию и мощность, и уже как следствие сокращение размеров станка (небольшие затраты на материалы и комплектующие). Торцовочный станок модели Т1 отличается несложной конструкцией, небольшими габаритами, малой мощностью, простотой в управлении и безопасностью в работе. Это краткосрочный проект.


5. Безопасность и экологичность проекта

5.1 Анализ условий труда при работе на торцовочном станке Т1

В результате нарушения установленных норм, правил, недоучета физиологических возможностей человека при эксплуатации станка могут быть опасные зоны и вредные условия, отрицательно влияющие на здоровье работающих. Поэтому анализ условий труда сводится к исследованию опасных и вредных производственных факторов. Опасный производственный фактор – это такой производственный фактор, воздействие которого на работающего приводит к травме. К опасным факторам в деревообрабатывающем цехе относятся: подвижные части производственного оборудования и промышленных роботов, передвигающиеся изделия, заготовки, материалы, оснастка и инструмент; разлетающиеся осколки от рабочих частей оснастки при возможном их разрушении; острые кромки (заусенцы, шероховатости на поверхности заготовок, деталей оснастки и инструмента); повышенное напряжение в электрической цепи оборудования; повышенный уровень статического электричества; повышенный уровень шума и вибрации на рабочем месте; повышенная запыленность воздуха рабочей зоны; физические перегрузки при транспортировании заготовок, деталей, оснастки; пожароопасность.

Все перечисленные факторы при их возникновении оказывают влияние на организм человека, снижая его работоспособность.

Подвижные части производственного оборудования и промышленных роботов, передвигающиеся изделия, заготовки, материалы, оснастка и инструмент, а также разлетающиеся осколки от рабочих частей оснастки при возможном их разрушении могут вызвать такие травмы как ушибы, переломы, вывихи, сотрясения головного мозга и другие травмы, приводящие к снижению или утрате работоспособности.

Острые кромки, заусенцы, шероховатости на поверхности заготовок, деталей оснастки и инструмента могут привести к появлению царапин, ссадин и порезов, которые могут стать причиной заражений, вызвав нетрудоспособность работников. Основными причинами травматизма, в первом и во втором случаях, являются несоблюдение требований техники безопасности; ошибочные действия при наладке, ремонте и регулировке оборудования или во время его работы и нарушение условий эксплуатации оборудования.

Повышенное напряжение в электрической цепи оборудования может привести к электротравмам, которые можно условно свести к двум видам: местным электротравмам (электрические ожоги, электрический знак, механические повреждения) и общим электротравмам (электрический удар). Основные причины несчастных случаев от воздействия электрического тока следующие: случайное прикосновение или приближение на опасное расстояние к токоведущим частям, находящимся под напряжением; появление напряжения на конструктивных металлических частях оборудования: корпусах, кожухах и т.п. – в результате повреждения изоляции или в силу других причин; появление напряжения на отключенных токоведущих частях, на которых работают люди, вследствие ошибочного включения установки; возникновение шагового напряжения в результате замыкания провода на землю.

Проходя через организм человека, электрический ток оказывает термическое, электролитическое, биологическое, механическое и световое действие. Термическое действие выражается в ожогах отдельных участков тела, нагреве и разрыве кровеносных сосудов, нервов и других тканей. Электролитическое действие выражается в разложении крови и других органических жидкостей, что вызывает значительное нарушение их физико-химических составов. Биологическое действие проявляется в нарушении биологических процессов, протекающих в организме человека, и сопровождается возбуждением и разрушением тканей и судорожным сокращением мышц. Механическое действие приводит к разрыву тканей, а световое – к поражению глаз.

Помещение цеха является особоопасным помещением, с точки зрения электробезопасности.

При работе на торцовочном станке накопление зарядов статического электричества происходит во время трения ремней клиноременной передачи о шкивы. Заряды статического электричества могут накапливаться и на людях, особенно при пользовании обувью с непроводящими электрический ток подошвами, одеждой и бельем из шерсти, шелка и искусственных волокон.

Физиологическое действие статического электричества может ощущаться в виде слабого, умеренного и сильного укола или толчка. Они неопасны, так как сила тока разряда статического электричества ничтожно мала. Но такое воздействие может привести к тяжелым несчастным случаям вследствие рефлекторного движения вблизи неогражденных движущихся частей. Искровые разряды статического электричества при несоблюдении установленных правил могут стать причиной воспламенения горючих веществ и взрывов, а также отрицательного воздействия на организм человека и снижения производительности труда. Разряды статического электричества приводят к порче и разрушению материалов, коррозии метало, ухудшению свойств смазочных масел.

Основные источники шума деревообрабатывающих станков – колебательные и аэродинамические процессы, возникающие при вращении режущих инструментов и взаимодействии их с обрабатываемой древесиной. Повышенный уровень шума на рабочем месте наносит большой ущерб, вредно действуя на организм человека и снижая производительность труда. В зависимости от уровня и характера шума, его продолжительности, а также от индивидуальных особенностей человека шум может оказывать на него различное воздействие.

Шум, даже когда он невелик (при уровне 50–60 дБА), создает значительную нагрузку на нервную систему человека, оказывая на него психологическое воздействие. С увеличением уровней до 70 дБА и выше шум может оказывать физиологическое воздействие на человека, приводя к видимым изменениям в его организме. Звуки, превышающие по своему уровню порог болевого ощущения (L=120–130 дБ), могут вызвать боли и повреждения в слуховом аппарате. Под воздействием шума, превышающего 85–90 дБА, в первую очередь снижается слуховая чувствительность на высоких частотах. При действии шума очень высоких уровней (более 145 дБА) возможен разрыв барабанной перепонки.

Шум, являясь общебиологическим раздражителем, не только действует на слуховой аппарат, но может вызвать расстройство сердечно-сосудистой и нервной систем, пищеварительного тракта, а также способствует возникновению гипертонической болезни. Человек, работая при шуме, привыкает к нему, но продолжительное действие сильного шума вызывает общее утомление, может привести к ухудшению слуха, а иногда и к глухоте, нарушается процесс пищеварения, происходит изменение объема внутренних органов. Эти вредные последствия шума выражены тем больше, чем сильнее шум и продолжительнее его воздействие. Патологические изменения, возникшие под влиянием шума, рассматривают как шумовую болезнь. Шум – одна из причин быстрого утомления работающих, вызывающая головокружение, что в свою очередь может привести к несчастному случаю. Установлено, что высокие уровни шума в отдельных случаях снижают производительность труда на 15–20%.

Источником вибрации на производстве может быть оборудование, неправильно установленное или эксплуатируемое длительное время без ремонта, оборудование с изношенными деталями и узлами, с зазорами выше допустимых пределов. Вибрация от оборудования передается через конструкции и пол человеку и вызывает общую вибрацию его тела. Особо вредны колебания с частотой 6–9 Гц, близкой к частоте колебаний отдельных органов человека. При этом возникает резонанс, который увеличивает колебания внутренних органов, расширяя или сужая их, что весьма вредно. Систематическое воздействие вибрации вызывает вибрационную болезнь (неврит) с потерей трудоспособности.

При работе на деревообрабатывающих станках воздух загрязняется древесной пылью, которая может вызвать легочные и кожные заболевания.

Физические перегрузки при транспортировании заготовок, деталей, оснастки вызывают снижение работоспособности, вследствие быстрой утомляемости организма. Систематическое воздействие этого фактора приводит к физическому истощению организма работника. Значительные величины перегрузок могут привести к травмам, например растяжениям, повреждениям позвоночника и другим.

Пожароопасность эксплуатации деревообрабатывающих станков обусловлена тем, что сама древесина – горючий материал. Другими причинами пожаров могут быть наличие неисправного электрооборудования, нарушение правил заземления, разряды статического электричества, нарушение пожарных норм и правил в технологических процессах, хаотическое содержание помещения (захламление изделиями, отходами), небрежное обращение с огнем (курение вблизи станка). Пожары на производстве приводят к значительным материальным потерям, а так же вызывают у работников ожоги различной степени и отравления продуктами горения, механические травмы.

На основании произведенного анализа условий труда разрабатываются мероприятия по предупреждению заболеваний и травматизма.

резец станок привод торцовочный

5.2 Разработка мероприятий по обеспечению безопасных и здоровых условий труда

Торцовочный станок модели Т1 предназначен для поперечной распиловки пиломатериалов. Безопасность эксплуатации станка обеспечена соответствием его конструкции требованиям ГОСТ 12.2.026.0–93, «Правилам устройства электроустановок» и требованиям технических условий ТУ 3831–001–00220954–95.

Требования безопасности к основным элементам станка:

– станок оборудован двухкнопочным (двуручным) управлением, обеспечивающим занятие обеих рук станочника во время рабочего цикла и исключающим попадание его рук в зону пиления;

– отключение хотя бы одной из кнопок ведет к возврату пильного механизма в исходное положение;

– кнопка «Общий стоп» позволяет отключать механизмы станка в случае аварийной ситуации;

– ширина прорези деревянной планки, через которую проходит пильный диск, не превышает 10 мм.

Требования к средствам защиты:

– клиноременная передача и подвижные части механизма резания расположены внутри станины станка и снаружи закрыты ограждениями:

– ограждения и козырьки, ограничивающие доступ в опасную зону (зону пиления), окрашены в желтый цвет в соответствии с ГОСТ 12.4.026–78.

Требования к обслуживающему персоналу. Обслуживающий персонал обязан:

– знать устройство и назначение органов управления, механизмов, ограждений и приспособлений, обеспечивающих безопасность станка;

– уметь определять неисправности механизмов станка;

– содержать в чистоте рабочее место и станок;

– иметь необходимые инструменты и материалы для уборки рабочих мест и чистки механизмов;

– работать в исправной спецодежде и головном уборе; одежда не должна стеснять движений и иметь свисающих концов, которые могут быть захвачены движущимися частями механизма;

– знать приемы первой медицинской помощи при несчастных случаях;

– до начала работы проверять исправность оградительных устройств и приспособлений, обеспечивающих безопасность работы, исправность узлов и механизмов, обеспечивающих нормальную работу станка;

– после окончания работы станка выключать все механизмы станка, производить их осмотр и чистку.

Запрещается:

– работать на заведомо неисправном станке;

– работать при снятых и открытых ограждениях с выключенной блокировкой;

– производить смазку, ремонт, чистку станка до полной остановки всех его механизмов;

– находится посторонним лицам в зоне работы станка;

– подправлять заготовки и удалять обрезки руками (только специальным толкателем).

Торцовочные станки для поперечного распиливания должны иметь ограждения пил, ограничители движения механизмов резания и подачи. Это концевые упоры, выключатели механического или автоматического действия, предотвращающие выход этих механизмов за установленные пределы во избежание аварий и несчастных случаев.

Торцовка пиломатериалов длиной менее 300 мм должна производиться с применением специальных приспособлений, обеспечивающих безопасность работающего при удержании и зажиме обрабатываемого материала. Во избежание возможности травмирования рук станки оснащаются каретками для подачи пиломатериалов. С целью уменьшения травмоопасности при работе на станке предусмотрена система отвода опилок, стружки, обрезков (например, вынос под действием центробежных сил по металлическому желобу – патрубку).

Для защиты персонала от повышенного напряжения в электрической цепи оборудования применяют усиленную изоляцию, используют ограждения, служащие для обеспечения недоступности токоведущих частей оборудования и электрических сетей; для устранения опасности поражения электрическим током в случае прикосновения к корпусу и другим нетоковедущим частям оборудования применяется защитное заземление.

С целью предупреждения электротравматизма регулярно проверяют изоляцию сетей и оборудования, проводят испытания индивидуальных защитных средств, обучение, аттестацию и переаттестацию персонала.

Для предупреждения возникновения опасных разрядов статического электричества предусмотрены следующие меры: отвод зарядов путем заземления оборудования, увеличение проводимости пола на рабочем месте, использование рабочими обуви с токопроводящей подошвой, антистатических перчаток, изготовленных из хлопчатобумажного материала.

Снижение повышенного уровня шума на рабочем месте осуществляется посредством установки звукопоглощающих и звукоизолирующих преград в виде экранов и перегородок на пути его распространения. Зоны с уровнем шума более 80 дБА обозначены знаками безопасности. Работающие в этих зонах снабжаются средствами индивидуальной защиты, к которым относятся ушные вкладыши, наушники и шлемофоны.

Предельно допустимые уровни шума определены ГОСТ 12.1.003–88. Характеристикой постоянного шума на рабочем месте является уровень звукового давления в дБ, непостоянного – эквивалентный уровень звука в дБА. Допустимый уровень звукового давления на деревообрабатывающем предприятии составляет 95 дБ, эквивалентный уровень звука – 80 дБА.

Вибрация машин в виде упругих волн распространяется от фундаментов по конструкции здания во все помещения, где и проявляется как шум. Ослабить такой шум можно только виброизоляцией и вибропоглощением. Для этих целей используют виброизолирующие основания под оборудование, виброизолированные плиты рабочих мест, плавающие фундаменты.

Согласно ГОСТ 12.1.0.12–90 определяют предельно допустимые параметры вибраций на рабочем месте.

Воздух, поступающий в рабочую зону должен иметь температуру, соответствующую санитарно-гигиеническим требованиям ГОСТ 12.1.005–88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны».

Метеорологические условия устанавливаются в зависимости от характера работ (тяжести). Работы на деревообрабатывающих станках относятся к работам средней тяжести. В соответствии с категорией работы устанавливается определенный микроклимат (см. табл. 5.1.)

Таблица 5.1. Показатели микроклимата

Период года

Температура, °С

Относительная влажность, %

Скорость движения, м/с

Холодный 17…19 40…60 0,12
Теплый 20…22 40…60 0,13

Для того чтобы поддержать в производственных помещениях нужный состав и состояние воздуха применяются устройства вентиляции. Для защиты органов дыхания и зрения от пыли и токсических паров используются средства индивидуальной защиты (респираторы, защитные очки).

Для устранения физических перегрузок при транспортировании заготовок, деталей, оснастки применяются средства механизации и автоматизации транспортных операций.

Для обеспечения пожаробезопасности рабочие места оборудуются первичными средствами пожаротушения (огнетушители, лопаты, ящики с песком, асбестовые полотна) и пожарной сигнализацией. В помещении цеха предусмотрен пожарный выход и план эвакуации.

Для создания светового комфорта на предприятиях используют: естественное освещение, искусственное, и совмещённое освещение, при котором недостаточное по нормам естественное освещение дополняют искусственным. Естественное и искусственное освещение в помещениях регламентируется нормами СНиП 23–05–95 в зависимости от характеристики зрительной работы, наименьшего объекта различения, разряда зрительной работы, системы освещения, фона, контраста объекта с фоном. Нормы искусственной освещенности при деревообработке на станке Т1: комбинированное общее освещение – 150 лк; комбинированное общее и местное – 500 лк.

5.3 Расчет защитного заземления станка Т1

Защитному заземлению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.

Цель расчета заземления – определить число и длину вертикальных элементов и разместить заземлитель на плане электроустановки, исходя из регламентированных правилами значений допустимых сопротивления заземления, напряжения прикосновения и шага, максимального потенциала заземлителя или всех указанных величин.

Заземлению подлежит торцовочный станок Т1, работающий под напряжением 380 В. Грунт – суглинок. Измерения проводились при относительной влажности грунта. Удельное сопротивление грунта ρизм = 100 Ом·м. Заземляющее устройство представляет собой полосу длиной 30 м. В качестве вертикальных стержней применяются трубы Ø50 мм длиной 3 м в грунте на расстоянии Но = 0,8 м. В качестве соединительной полосы используется стальная шина сечением 40x4 мм. Естественные заземлители отсутствуют.

Расчет защитного заземления проводится по методике, изложенной в [19].

Порядок расчета:

1. Расчетный ток замыкания на землю в сетях с изолированной нейтралью напряжением до 1000 В определяется по формуле:


, А,

где    - фазное напряжение, В;

Z – сопротивление изоляции сети относительно земли, Ом. Если Z неизвестно, то принимаем Z = 100 Ом.

А

Так как напряжение в данной установке меньше 1000В, то сопротивление заземляющего устройства R3 не должно превышать 4 Ом.

2. Расчетное удельное сопротивление грунта определяется по формуле:

, Ом·м,

где    ψ – климатический коэффициент.

 Ом·м

3. Определяется сопротивление естественных заземлителей.

Так как естественные заземлители отсутствуют, то в качестве естественного берем один из искусственных. Принимаем сопротивление естественного заземлителя Rе = 4 Ом.

4. Определяется сопротивление искусственного заземлителя. Считается, что искусственные и естественные заземлители соединены параллельно, и общее их сопротивление не должно превышать норму Ru ≤ RH. Следовательно, принимаем Ru = 4 Ом.

5. Сопротивление одиночного вертикального заземлителя с учетом расчетного удельного сопротивления грунта определяется по формуле:

, Ом,


где    l – длина стержня, м;

d – диаметр стержня, м;

Н – расстояние от грунта до середины стержня, м.

Ом

6. Предварительно разместив заземлители на плане, определяют (задают) число вертикальных заземлителей и расстояние между ними. С учетом этих данных определяют коэффициент использования вертикальных стержней.

Длина соединительной полосы равна периметру 30 м. Примем число вертикальных стержней равным 15, а расстояние между ними 2 м. По таблицам определяем коэффициент использования вертикальных стержней ηcm =0,51.

7. Сопротивление соединительных полос определяется по формуле:

, Ом,

где    b – ширина полосы, м.

По таблицам определяем коэффициент использования соединительных полос ηп = 0,52. Тогда сопротивление соединительных полос с учетом коэффициента использования определяется по формуле:

, Ом

Ом

8. Требуемое сопротивление вертикальных стержней (заземлителей) определяется по формуле:


, Ом

Ом

9. Учитывая коэффициент использования вертикальных стержней, окончательно определяют их число по формуле:

, шт.

Таким образом, для надежного заземления торцовочного станка, подключенного к сети напряжением 380 В необходимо 15 стержней круглого сечения 050 мм и длиной 3 м, расположенных в ряд и соединенных стальной полосой сечением 40x4 мм по периметру. Крепление соединительной полосы к заземлителям осуществляется сварным соединением. Схема заземления торцовочного станка Т1 представлена на плакате (ДП. 151001.10.23.113.05.01.000).

5.4 Меры по обеспечению устойчивости функционирования объекта в условиях чрезвычайной ситуации

Исходя из особенностей рельефа, климатических, гидрографических и природных условий, на территории Вологодской области возможно возникновение чрезвычайных ситуаций природного характера, таких как лесные и торфяные пожары, подтопление населенных пунктов в период весенних половодий и дождевых паводков, ураганные ветры, сильные снегопады, гололед, метель. Кроме того, могут произойти аварии и другие чрезвычайные происшествия по техногенным причинам. В области имеются три химически опасных города – Вологда, Череповец, Сокол. На территории Вологодской области находятся девять химически опасных объектов. Из них:

– I степени опасности – «Вологдагорводоканал», АО «Вологодский льнокомбинат»;

– II степени опасности – станция осветления технической воды, АО «ВПЗ», АО «Агма-холод»;

– III степени опасности – АО «Вологодский мясокомбинат», комбинат «Заречье», АО «Вологодский молочный комбинат», АО «Вологдамолоко», АО Торговое предприятие «Вологодское».

По территории области проложено около шестисот километров железнодорожных путей. Наиболее часто перевозимые по железной дороге сильнодействующие ядовитые вещества – хлор и аммиак. Основные направления их перевозок по железной дороге – участки: Вологда – Вожега, Вологда – Череповец, Грязовец – Вологда. На территории Вологды расположены один взрывоопасный (АО «Вологодский комбинат хлебопродуктов») и 9 наиболее крупных пожароопасных объектов (например, Вологодская нефтебаза).

К факторам, влияющим на устойчивость работы объектов, относятся: район расположения объекта, планировка и застройка территории объекта, системы электроснабжения, технология, производственные связи объекта, система управления предприятием, подготовленность объекта к восстановлению.

При анализе района расположения объекта учитываются нахождение на данной территории других объектов, которые могут служить источником возникновения вторичных факторов поражения (гидроузлы, химзаводы), естественные условия местности (лес – источник пожаров, дороги, реки), метеорологические условия (количество осадков, направление ветра).

При рассмотрении зданий и сооружений данной территории учитываются этажность, огнестойкость строительных конструкций и другие характеристики, влияющие на устойчивость и уязвимость к воздействию световых излучений, ударной волны; отмечаются сооружения, которые не могут участвовать в производстве основной продукции.

При оценке внутренней планировки территории объекта учитываются влияние плотности и тип застройки на возможность возникновения и распространения пожаров, образование завалов входов в убежищах, возникновение вторичных факторов поражения (емкости с ядовитыми веществами, аммиачные установки).

При изучении технологии на объектах учитывается возможность изменения производственного процесса на время ЧС (частичное производство, выпуск новой продукции), возможность электроснабжения от внутренних источников, выявляется минимальная потребность в энергии, газе, воде, паре и других видах энергоснабжения в период ЧС.

При анализе системы управления учитывают возможность связи, ее надежность, возможность взаимозаменяемости руководящего состава, надежность системы оповещения. Учитывают системы материально-технического снабжения в период ЧС, оценивают имеющиеся запасы сырья, деталей и возможности их пополнения.

Изучается возможность восстановления производства после поражения объекта, предусматриваются меры по скорейшему восстановлению: возможности строительно-монтажных организаций, запасы строительных материалов, наличие проектной документации для проведения работ.

Повышение устойчивости работы объекта достигается усилением наиболее слабых (уязвимых) элементов и участков объекта.

Основные меры по повышению устойчивости:

– усиление прочности зданий, сооружений, имеющих большое значение, но малопрочные элементы (закрепление оттяжками, устройство бетонных и металлических поясов, повышающих жесткость конструкции);

– повышение устойчивости наиболее ценного и уникального оборудования, эталонных контрольно-измерительных приборов; это оборудование размещается в облегченных трудносгораемых зданиях (меньше повреждаются при разрушении) или в заглублениях, подземных или специально построенных помещениях повышенной прочности, устраиваются защитные шатры, кожухи, зонты, козырьки, сетки над оборудованием;

– повышение устойчивости технологического процесса за счет резервирования систем автоматики, обеспечения возможности ручного управления, сокращения числа используемых станков, линий; размещения производства отдельных видов продукции в филиалах, параллельных цехах, замены сложной технологии более простой, разработки способов безаварийной остановки производства по сигналу тревоги;

– повышение устойчивости систем энергоснабжения за счет создания дублирующих источников электроэнергии, газа, воды, пара (прокладка дополнительных коммуникаций, их закольцевание), принятие мер против разрушения (усиление опор, заглубление, усиление перекрытий), введение передвижных электростанций, насосных установок с автономным приводом; приспособление ТЭЦ к различным видам топлива;

– повышение устойчивости водоснабжения: питание от нескольких водоисточников, скважин, расположенных на достаточно большом расстоянии друг от друга, внедрение оборотного водоснабжения, защита воды от заражения (дополнительная очистка, защита водозаборов);

– обеспечение устойчивости управления производством: создание групп управления (по числу смен) для руководства производством, спасательными и аварийно-восстановительными работами, устройство пункта управления в одном из убежищ, дублирование связи;

– повышение устойчивости материально-технического снабжения объекта: создание запасов сырья, материалов, оборудования, топлива, обеспечение их сохранности;

– проведение противопожарных мероприятий: сведение до минимума возможности возникновения пожаров от светового излучения, от воспламенений, вызванных воздействием ударной волны; защите от светового излучения подлежат сгораемые кровли, деревянные стены и элементы (окраска огнезащитной краской, покрытие известковой смесью, обмазка глиной, закрашивание стекол окон); разборка малоценных сгораемых объектов, конструкций; очистка территории от сгораемых материалов; сооружение противопожарных водоемов, противопожарных преград.

Данный торцовочный станок модели Т1 предназначен для поперечной распиловки досок на планки по длине заготовок бельевых зажимов. В условиях ЧС возможно изменение параметров обрабатываемых досок за счет изменения положения съемного торцовочного упора, расположенного на столе станка.

Станок оборудован двухкнопочным управлением: кнопка включения электродвигателя привода пилы («Пуск»), кнопка выключения электродвигателя привода пилы («Общий стоп»). Кнопка «Общий стоп» позволяет отключить механизмы станка в случае аварийной ситуации, при этом пильный механизм возвращается в исходное положение.

5.5 Меры по охране окружающей среды на предприятии

Хозяйственная деятельность человека является одним из важнейших факторов влияния на окружающую среду. В результате выбросов в атмосферу отходов производства изменяется ее химический состав, стоки промышленных вод в водоемы загрязняют почву и источники водоснабжения. Под загрязнением окружающей среды понимают любое внесение в ту или иную экологическую систему несвойственных ей живых или неживых компонентов, физических или структурных изменений, прерывающих или нарушающих процессы круговорота и обмена веществ, потоки энергии со снижением продуктивности или разрушением данной экосистемы.

Промышленные предприятия загрязняют почву различными отходами: стружками, опилками, пылью. Отходы предприятий необходимо собирать для повторной переработки; отходы, для которых не разработана технология переработки, хранятся в отвалах. Из отходов древесины изготавливаются прессованием товары народного потребления. Основными направлениями ликвидации и переработки отходов являются: вывоз и захоронение на полигонах, сжигание, складирование и хранение до появления технологии переработки,

Цеха используют воду, например, для охлаждения инструмента. Практически большинство технологических процессов используют воду, которая загрязняется кислотами, цианидами, щелочами, механическими примесями, окалиной и пр. Использованная предприятием вода поступает в очистные сооружения предприятия, очищается и повторно используется (повторное, оборотное водоснабжение).

Очистка сточных вод от механических примесей осуществляется методами процеживания, отстаивания, отделения механических частиц в поле действия центробежных сил и фильтрования. Процеживание сточных вод осуществляется пропусканием через решетки и волокноуловители для выделения примесей размером 25 мм и более, а также волокнистых загрязнений. Отстаивание происходит в отстойниках, песколовках. В гидроциклонах и центрифугах используются центробежные силы для очистки воды от загрязнений. Фильтрование используется для очистки от тонкодисперсных загрязнений, при этом применяются зернистые фильтры (песок, шлак, гравий) и микрофильтры (металлические сетки).

В производственных помещениях работающие станки, машины, оборудование выделяют в окружающий воздух большое количество различных паров, газов и пыли. На качество воздуха влияет и лучистое тепло, выделяемое работающими станками, аппаратами, прессами, печами, нагретыми изделиями. Основными мероприятиями по снижению выбросов вредных веществ в атмосферу являются:

– совершенствование технологических процессов, включая снижение неорганизованных выбросов;

– применение герметичного внутризаводского транспорта, перевозящего пылящие материалы;

– отказ от применения складов и резервуаров открытого типа;

– строительство новых и повышение эффективности существующих очистных устройств;

– перепрофилирование производства;

– повышение общей культуры производства (механизация и автоматизация технологических процессов, дистанционное управление, качественный ремонт промышленного оборудования);

– контроль за содержанием вредных веществ в воздухе рабочей зоны.

Применительно к предприятиям деревообработки наиболее значительным представляется газо- и пылеулавливание вентиляционных выбросов, а также проведение мероприятий по снижению доли неорганических выбросов. Очистку и обезвреживание газовых составляющих промышленных производств осуществляют методами, выбор которых определяется составом, концентрацией загрязняющих веществ, типом производства, условиями выброса.

Очистку вентиляционных выбросов от механических примесей осуществляют аппаратами мокрого и сухого пылеулавливания, волокнистыми фильтрами и электрофильтрами.

К аппаратам сухой очистки относятся пылеосадительные камеры, циклоны (прямоточные и батарейные), центробежные пылеуловители ротационного действия.

К аппаратам мокрой очистки относятся насадочные и полые газопромыватели с подвижными насадками, ударно-инерционного и центробежного действия, механические.

Фильтры используются для тонкой очистки атмосферного воздуха. Фильтр – это устройство, в котором запыленный воздух пропускается через пористые или сетчатые материалы и конструкции, которые способны задерживать или осаждать пыль. Фильтры для очистки воздуха бывают: бумажные, масляные, ультразвуковые, электрофильтры и т.д.

При работе станков, которые должны снабжаться вентиляционными системами, транспортировка пылевоздушного потока через систему вентиляции обеспечивается вентилятором. Отходящие вредные вещества проходят цикл последовательной очистки от пыли и вредных газообразных соединений, которые нейтрализуются в замкнутой оборотной системе циркуляции.

Для проверки качества работы системы вентиляции ежемесячно проводятся контрольные замеры, концентрации пыли на рабочих местах операторов и других участков цеха. При превышении предельно допустимой концентрации принимаются меры для очистки вентиляционных систем и устранения неисправностей их работы.

В ходе работы торцовочного станка Т1 происходит образование большого количества стружки и опилок. Из рабочей зоны они выносятся по металлическому желобу (патрубку) под действием центробежных сил. Во избежание скопления отходов у станка рабочий участок оборудуют системой отсасывания стружки, к которой подсоединяют патрубок.


Заключение

По каждому из выполненных разделов дипломного проекта можно кратко сформулировать следующие выводы:

Рассмотрены принцип работы торцовочного станка модели Т1, исследовано назначение основных узлов станка.

Произведены расчет и проектирование привода главного движения станка. Разработана кинематическая схема привода и проведен его энергокинематический расчет. Спроектирована клиноременная передача, сконструирован и рассчитан пильный вал. Проведен расчет подшипников на долговечность.

Разработан технологический процесс изготовления пильного вала станка модели Т1. Произведен выбор заготовки, типа производства, оборудования, инструмента, приспособлений. Рассчитаны припуски на обработку, режимы резания, технологическая норма времени. Рассчитан и спроектирован токарный проходной упорный резец, оснащенный пластиной из твердого сплава Т15К6, который применяется для черновой и чистовой обработки пильного вала.

В организационно-экономической части рассмотрена организация рабочего места станочника при работе на торцовочном станке. Произведен расчет затрат на производство станка, включающих в себя затраты на материалы и комплектующие, заработную плату работников, отчисления на социальные нужды, накладные и прочие расходы. Они составили 30875,05 руб. Также произведен расчет показателей экономической эффективности проекта – экономического эффекта, срока окупаемости капитальных вложений.

В разделе «Безопасность и экологичность проекта» был произведен анализ опасных и вредных факторов, возникающих при эксплуатации торцовочного станка Т1. Также были разработаны мероприятия по обеспечению безопасных и здоровых условий труда, меры по обеспечению устойчивости функционирования объекта в условиях чрезвычайной ситуации и меры по охране окружающей среды. Произведен расчет необходимого защитного заземления торцовочного станка Т1.


Список использованных источников

1. Захарова, Е.И. Лесопильное производство / Е.И. Захарова. – М.: Высшая школа, 1968. -320 с.

2. Маковский, Н.В. Теория и конструкция деревообрабатывающих машин / Н.В. Маковский, В.В. Амалицкий. – М.: Лесная промышленность, 1990. – 608 с.

3. Афанасьев, П.С. Конструкция и расчеты деревообрабатывающего оборудования / П.С. Афанасьев. – М.: Машиностроение, 1969. – 400 с.

4. Иванов, М.Н. Детали машин: учеб. для студентов высших технических учебных заведений. – 5-е изд., перераб./ М.Н. Иванов. – М.: Высшая школа, 1991. – 383 с.

5. Свирщевский, Ю.И. Расчет и конструирование коробок скоростей и подач / Ю.И. Свирщевский, Н.Н. Макейчик. – Минск: Высшая школа, 1976. – 592 с.

6. Анурьев, В.И.: справочник конструктора-машиностроителя: В 3 т. – 5-е изд., перераб. и доп. / В.И. Анурьев. – М.: Машиностроение, 1978. – 1844 с.

7. Дунаев, П.Ф. Конструирование узлов и деталей машин: учеб. пособие для машиностроит. спец. вузов. – 4-е изд., перераб. и доп. / П.Ф. Дунаев, О.П. Леликов. – М.: Высшая школа, 1985. – 416 с.

8. Горбацевич, А.Ф. Курсовое проектирование по технологии машиностроения: учеб. пособие для машиностроит. спец. вузов. – 4-е изд., перераб. и доп. / А.Ф. Горбацевич, В.А. Шкред. – Минск: Высшая школа, 1983. – 256 с.

9. Справочник технолога-машиностроителя: справочник в 2 т. – Т. 2 / А.Г. Косилова, Р.К. Мещеряков; под ред. А.Г. Косиловой и Р.К. Мещерякова. – 4-е изд., перераб. и доп. – М.: Машиностроение, 1985. – 496 с.

10. Режимы резания металлов: справочник / Ю.В. Барановский; под. ред. Ю.В. Барановского. – 3-е изд., перераб. и доп. – М.: Машиностроение, 1972. – 408 с.

11. Обработка металлов резанием: справочник-технолога / А.А. Панов, В.В. Аникин. – М.: Машиностроение, 1988. – 736 с.

12. Семченко, И.И. Проектирование металлорежущих инструментов / И.И Семченко, В.М. Матюшин, Г.Н Сахаров и др. – М.: Машгиз, 1962. – 948 с.

13. Сахаров, Г.Н. Металлорежущие инструменты: учебник для вузов / Г.Н. Сахаров, О.Б Арбузов, Ю.Л. Боровой и др. – М: Машиностроение, 1989. – 328 с.

14. Ансеров, М.А. Приспособления для металлорежущих станков. – 3-е изд./ М.А. Ансеров. – М.: Машиностроение, 1966. – 650 с.

15. Приспособления для металлорежущих станков: справочник. – 6-е изд. / А.К. Горошкин. – М.: Машиностроение, 1971. – 384 с.

16. Платов, М.И. Организация и планирование машиностроительного производства: Учеб. для машиностр. спец. вузов / М.И. Платов, М.К. Захарова, К.А. Грачева и др.; под ред. М.И. Ипатова, В.И. Постникова и М.К. Захаровой. – М.: Высшая школа, 1991. – 367 с.

17. Грибанова, О.А. Технико-экономическое обоснование дипломных проектов производственно-технологического направления: Методическое пособие по выполнению организационно-экономической части дипломного проекта для студентов очной и заочной форм обучения / сост. О.А. Грибанова. – Вологда: ВоГТУ, 2004. – 32 с.

18. Морозов, Ю.П. Инновационный менеджмент: учеб. пособие для вузов./ Ю.П. Морозов. – М.: ЮНИТИ – ДАНА, 2000. – 446 с.

19. Князевский, Б.А. Охрана труда в электроустановках: учебник для вузов / под. ред. Б.А. Князевского. – 3-е изд. – М.: Энергоатомиздат, 1983. – 336 с.

20. Князевский, Б.А. Монтаж и эксплуатация промышленных электроустановок: учебник для вузов. – 2-е изд., перераб. и доп./ Б.А. Князевский, Л.Е. Трунковский. – М.: Высш. шк., 1984. – 175 с.

21. Обливин, В.Н. Охрана труда на деревообрабатывающих предприятиях: учеб. пособие для нач. проф. образования / В.Н. Обливин, Л.И. Никитин, Н.В. Гренц. – 2-е изд. – М.: Издательский центр «Академия», 2003. – 256 с.

22. Пожарная безопасность деревообрабатывающих предприятий: справочник / Е.С. Назаренко, В.А. Казанцев. – М.: Лесная промышленность, 1990. – 272 с.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.