рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Дипломная работа: Автоматизация процесса поперечной резки электротехнической стали

В сливной гидролинии установлены: 7 штуцеров - xс1 = 0,15, 1 прямоугольный тройник - xс2 = 0,1, 8 плавных колен - xс3 = 0,12.

vжi - скорость движения потока на участке;

g - удельный вес рабочей жидкости (g = 8829 Н/м3).

Линейные потери давления в гидролиниях (за счет трения жидкости о стенки трубопровода) рассчитывают по уравнению

 ,

где l - длина сливной или напорной гидролинии. Для напорной гидролинии lн = 8 м, для сливной гидролинии lc = 5 м.

l - коэффициент сопротивления гидролинии.

Для турбулентного потока

l = 0,316×Re-0,25

Для ламинарного потока

 

Потери давления в напорной линии

 

 МПа

Потери давления в сливной гидролинии

 МПа

Потери давления в напорной гидролинии гидроцилиндров перемещения валка подающего.

В напорной линии гидроцилиндр гидроцилиндров перемещения валка подающего установлены два обратных клапана, фильтр и распределитель.

Потери давления на обратном клапане Dрн.ко1 = 0,55 МПа.

В сливной линии гидроцилиндр гидроцилиндров перемещения валка подающего установлены регулируемый дроссель, распределитель и фильтр.

Потери давления на регулируемом дросселе Dрн.др = 0,4 МПа.

В напорной гидролинии установлены: 10 штуцеров, 3 прямоугольных тройника, 9 плавных колен.

В сливной гидролинии установлены: 7 штуцеров, 1 прямоугольный тройник, 5 плавных колен.

Длина напорной гидролинии lн = 11 м,

для сливной гидролинии lc = 9 м.

Потери давления в напорной линии

 

 МПа

Потери давления в сливной гидролинии

 

 МПа

Приведем потери на сливе к эффективной площади поршня:

 МПа

В сливной линии гидроцилиндров перемещения валка правильного установлены регулируемый дроссель, распределитель и фильтр.

В напорной гидролинии установлены: 10 штуцеров, 3 прямоугольных тройника, 11 плавных колен.

В сливной гидролинии установлены: 7 штуцеров, 1 прямоугольный тройник, 9 плавных колен.

В напорной гидролинии установлены: 15 штуцеров, 3 прямоугольных

тройника, 8 плавных колен.

В сливной гидролинии установлены: 5 штуцеров, 4 прямоугольных тройника, 9 плавных колен.

Длина напорной гидролинии lн = 8 м,

для сливной гидролинии lc = 10 м.

Потери давления в напорной линии

 

 МПа

Потери давления в сливной гидролинии

 

 МПа

Приведем потери на сливе к эффективной площади поршня:

 МПа

Потери давления в напорной гидролинии гидроцилиндров перемещения тормоза валка.

В напорной линии гидроцилиндров перемещения тормоза валка установлены обратный клапан, фильтр, распределитель и обратный клапан.

В напорной гидролинии установлены: 7 штуцеров, 3 прямоугольных тройника, 15 плавных колен.

Длина напорной гидролинии lн = 15 м.

Потери давления в напорной линии

 

 МПа

2.9 Расчет рабочего давления гидропривода

Рабочее давление гидропривода подачи валковой рассчитывается по максимальному давлению в гидросистеме.

Давление в гидросистеме при рабочем ходе гидроцилиндров перемещения валка подающего:


рр1 = р1 + D рн1 + D рн.п1 = 6,782+1,709+0,589 = 9,079 МПа

Давление в гидросистеме при рабочем ходе гидроцилиндров перемещения валка правильного:

рр2 = р2 + D рн2 + D рн.п2 = 8,478+1,691+0,599 = 10,768 МПа

Давление в гидросистеме при вращении гидромотора:

рр4 = р4 + D рн = 8,993+1,691 = 10,684 МПа

Максимальное давление будет в гидросистеме при перемещении гидроцилиндров валка правильного.

Определим давление настройки предохранительного клапана насосной установки.

ркп = 1,1× р21 = 1,1× 10,768 = 11,845 МПа

2.10 Расчет энергетических характеристик

Гидромотор привода валков подающих.

Мощность гидромотора найдем по формуле:

N4 = p4 × Qpаб.н4 = 8,993×106 ×5,319×10-4 = 4784 Вт

Мощность, на выходе из гидростанции:

 ,


где рн - рабочее давление насоса;

- расход насоса;

hн = 0,7 - полный КПД насоса.

 Вт

При работе подачи валковой вся подача насоса расходуется только при вращении гидромотора. При перемещении гидроцилиндров к гидроцилиндрам поступает только часть подачи насоса, остальное масло сливается через предохранительный клапан.

Мощность, на выходе из гидростанции при перемещении гидроцилиндров:

 Вт

Мощность на гидроцилиндрах перемещения валка подающего:

N1 = ( pкп - Dpн1 - Dpн.п1)× Qpаб.н1 =

= (11,845 –1,709 – 0,589)×106 ×4,021×10-4 = 3839 Вт

Мощность на гидроцилиндрах перемещения валка правильного:

N2 = ( pкп - Dpн2 - Dpн.п2)× Qpаб.н2 =

= (11,845 – 1,691 – 0,599)×106 ×5,027×10-4 = 4803 Вт

Мощность на гидроцилиндрах перемещения тормоза валка:


N3 = ( pкп - Dpн3)× Qpаб.н3 =

= (11,845 – 1,318 )×106 ×6,267×10-5 = 660 Вт

КПД гидропривода валка подающего:

 

КПД гидропривода валка правильного:

 

КПД гидропривода тормоза валка:

 

КПД гидропривода валков подающих:

 

Среднецикловой КПД гидропривода.

 ,

где t1...ti - время рабочего цикла.

Определим время движения гидроцилиндров.

Гидроцилиндры перемещения валка подающего:

 с

Гидроцилиндры перемещения валка правильного:

 с

Гидроцилиндры перемещения тормоза валка:

 с

Время работы гидромотора привода валков подающих t4 = 60 с.

Среднецикловой КПД гидропривода подачи валковой.

 

 

Суммарные потери мощности гидропривода за весь рабочий цикл определяются уравнением:

 

Суммарные потери мощности гидропривода за цикл работы подачи валковой:

 

 кВт

2.11 Обеспечение рационального теплового режима работы гидропривода

Превышение установившейся температуры масла в баке над температурой окружающей среды составляет:

 ,

где Sб - площадь поверхности бака;

Кт - коэффициент теплопередачи в атмосферу.

Площадь боковой поверхности бака определяется формулой.

 ,

где Wб - объем масла в баке.

При максимально допускаемом DТ = 35 0С необходимый объем масла в баке W определяется выражением

 л

Площадь боковой поверхности бака определяется формулой.

 м2

Для уменьшения объема маслобака применяем принудительное водяное охлаждение.

Кт = 200 Вт/(м2×с) - коэффициент теплопередачи при принудительном водяном охлаждении.

Тогда при DТ = 35 0С.

 м2

Объем маслобака.

 м3 (2.144)

2.12 Расчет мощности приводного электродвигателя насосной установки

Электродвигатель насоса выбирается по эквивалентной мощности:


  кВт

По справочнику [9] выбираем электрический двигатель типа 4А 132М4У3.

Техническая характеристика электрического двигателя.

Частота вращения – 1500 об/мин.

Мощность – 11 кВт.

Cosj - 0,87.

Ммах / Мн - 2,2.

Мпуск / Мн – 2,0.


3. ДИНАМИЧЕСКИЙ РАСЧЕТ ГИДРОПРИВОДА ПОВОРОТА ВАЛКОВ ПОДАЮЩИХ

3.1 Математическое описание гидропривода поворота валков подающих

Расчет динамики гидравлического привода валков подающих выполним с помощью программы Hydrocad.

В гидравлический привод валков подающих входят гидромотор, регулируемый насос, фильтр с установленным параллельно обратным клапаном, предохранительный клапан, обратный клапан линии нагнетания и трехпозиционный распределитель. На сливе гидромотора установлен клапан давления.

Расчетная схема гидравлического привода в программе Hydrocad показана на рисунке 4

Рисунок 4 – Расчетная гидравлическая схема привода валков подающих


Работа регулируемого насоса в математической модели описана формулами.

Расход на входе в насос:

 ,

где Рар_рег – параметр регулирования;

qнас – номинальный рабочий объем;

nном – номинальная частота вращения.

Расход на выходе из насоса:

 ,

где hо ном – КПД объемный при номинальном режиме работы;

Рном – номинальное давление насоса;

Р2 – давление на выходе насоса.

Работа фильтра описана формулами.

Площадь проходного отверстия фильтра.

 ,

где dусл – диаметр условного прохода фильтра.

Расход на входе и выходе фильтра.

 

Р1 – давление на входе в фильтр;

Р2 – давление на выходе из фильтра.

Работа обратного клапана описана формулами.

Если

Р1 > Р2

То расход на входе и выходе обратного клапана описывается формулой

,

где dусл – диаметр условного прохода обратного клапана;

m - коэффициент расхода обратного клапана;

r - плотность масла;

Р1 – давление на входе в обратный клапан;

Р2 – давление на выходе из обратного клапана.

Иначе

Q1 = 0

Работа предохранительного клапана описана формулами.

Если

Р1 > Рнастр × 106 ,

где Рнастр - давление настройки предохранительного клапана;

Р1 – давление на входе в предохранительный клапан.

То расход на входе и выходе предохранительного клапана описывается формулами.

,

где m - коэффициент расхода предохранительного клапана;

dусл – диаметр условного прохода предохранительного клапана;

Р2 – давление на выходе из предохранительного клапана.

Иначе

Q1 = 0

Работа распределителя описана формулами.

Площадь проходного отверстия распределителя.

 ,

где dусл – диаметр условного прохода распределителя.

Расход через распределитель зависит от его позиции.

Если

Рос = 0,

то

Q1 =0 ;

Q2 =0 ;

Q3 =0 ;

Q4 =0 ;

Если

Рос = 1,

то

 ;

Q2 = Q1 ;

 ;

Q4 = - Q3 ;

Если

Рос = 2,

то

 ;

Q3 = Q1 ;

 ;

Q4 = - Q2 ;

где Рос - позиция распределителя;

Р1 – давление на входе в распределитель;

Р2 – давление на входе в распределитель;

Р3 – давление на выходе из распределителя;

Р4 – давление на выходе из распределителя

Гидравлический мотор описан формулами.

Мтр1 = Мтр ,

где Мтр - момент трения гидромотора.

Если

 и  w1=0

То движущий момент меньше момента трения.

,

где Р1 – давление на входе в гидромотор;

Р2 – давление на выходе из гидромотора;

qгм – рабочий объем гидромотора;

hм_ном - КПД механический при номинальном режиме;

М1 - вращательный момент гидромотора.

Угловое ускорение гидромотора описано формулой.

 ,

где Jгм - момент инерции вращающихся масс гидромотора;

l - коэффициент вязкого трения;

w1 – угловая скорость гидромотора.

Угол поворота гидромотора описан формулой.

dj1 = w1

Расход до гидромотора.

 

Расход после гидромотора.

,

где hо_ном - КПД объемный при номинальном режиме;

Рном – номинальное давление гидромотора.

Работа клапана давления описана формулами.

Если

Р3 > Рнастр × 106 ,

где Рнастр - давление настройки гидравлически управляемого клапана;

Р3 – давление в линии управления клапана.

То расход до и после клапана определяется формулами.

,

где dусл – диаметр условного прохода гидравлически управляемого клапана;

Р1 – давление на до гидравлически управляемого клапана;

Р2 – давление после гидравлически управляемого клапана.

Иначе клапан закрыт и расход до и после клапана рассчитывается по формуле.

Q1 = 0

Давление в трубопроводах описаны формулами.

Dery[1] := c1× (Q[9] - Q[12]);

Dery[2] := c2× (Q[13] + Q[11]);

Dery[3] := c3× ( - Q[10] + Q[14]);

Dery[4] := c4× (Q[15] - Q[16]);

Dery[5] := c5× (Q[5] + Q[3] - Q[8] - Q[0]);

Dery[6] := c6× ( - Q[4] - Q[2] + Q[7]),

где c1 – с6 – жесткости трубопроводов;

Q[i] - расходы в трубопроводах.

Текст программы расчета динамики гидропривода валков подающих приведен в приложении к дипломному проекту.

3.2 Результаты расчета динамики гидропривода валков подающих

Результаты расчета динамики гидропривода валков подающих показаны на рисунках 5 – 13

На рис. 5 показан расход масла перед гидромотором. На рис 6 показан расход масла после гидромотора. На рис. 7 показано давление масла перед гидромотором. На рис. 8 показано давление масла после гидромотора. На рис. 9 показана угловая скорость гидромотора. На рис. 10 показан угол поворота гидромотора. На рис. 11 показана нагрузка на гидромоторе. На рис. 12 показан расход после насоса. На рис. 13 показано давление после насоса

Q, м3/с

 t,c

Рисунок 5 – Расход масла перед гидромотором

Q, м3/с

 t,c

Рисунок 6 – Расход масла после гидромотора

Р, Па

 t,c

Рисунок 7 – Давление перед гидромотором Р, Па

 t,c

Рисунок 8 – Давление после гидромотора w, с-1

 t,c

Рисунок 9 – Угловая скорость гидромотора j, рад

 t,c

Рисунок 10 – Угол поворота гидромотора

М, Нм

 t,c

Рисунок 11 – Нагрузка на гидромоторе Q, м3/с

 t,c

Рисунок 12 – Расход после насоса Р, Па

 t,c

Рисунок 13 – Давление после насоса


Максимальная нагрузка на гидромотор при вращении гидромотора привода валков подающих составляет 329 Нм. В динамических расчетах принимаем изменение нагрузки по циклограмме, показанной на рисунке 11. Нагрузка на гидромоторе плавно нарастает за время от 0 с до 2 с от 0 до 329 Нм. В дальнейшем нагрузка остается постоянной – 329 Нм. Через 5 секунд после начала расчета мы моделируем плавное возрастание момента нагрузки до 370 Нм. Такое значение момента сохраняется до 6,5 секунд и затем плавно уменьшается до 329 Нм.

В начале расчета после запуска привода расход насоса начинает расти. Мы устанавливаем такое значение параметра регулирования насоса, чтобы обеспечить заданную частоту вращения 120 об/мин (12,6 с-1). На рисунке 12 видно, что при работе привода расход насоса уменьшается. Часть расхода тратится на утечки в насосе. Они описаны в программе объемным КПД насоса.

Масло от регулируемого насоса поступает через фильтр к обратному клапану. Предохранительный клапан настроен на давление 16 МПа.

Далее масло поступает к распределителю масло и к гидромотору.

Позиция гидрораспределителя в программе задается постоянной.

Давление на выходе из насоса на рисунке 13 и перед гидромотором на рисунке 4 начинает расти. Сначала давления растут быстро до величины 2,5 МПа. В это время гидромотор вращается медленно. Постепенно частота вращения гидромотора увеличивается и рост давления замедляется. Расчетному значению момента нагрузки на валу гидромотора соответствует давление 11 МПа. При увеличении нагрузки давление в линии его питания и после насоса плавно возрастает до 12,2 МПа и затем уменьшается до 11 МПа.

Давление на сливе гидромотора показано на рисунке 8. Его величина определяется настройкой клапана давления и за все время расчета остается практически постоянной и равной 2 МПа.

Предохранительный клапан не открывается, так как он настроен на давление 16 МПа.

Угловая скорость гидромотора на рисунке 6 тесно связана с расходом гидромотора на рисунке 5.

В начале вращения гидромотора нагрузка на него определяется моментом трения в его подвижных частях, который задается в программе. В это время его вал начинает быстро вращаться и угловая скорость достигает 18 с-1. Это вызывает рост расхода до 7,1×10-4 м3/с, который на какое-то время становится больше подачи насоса 6×10-4 м3/с. В дальнейшем угловая скорость уменьшается до 12 с-1 и наконец устанавливается на значении 13,2 с-1.

Изменение нагрузки вызывает кратковременное изменение угловой скорости гидромотора. Но потом она становится равной 13,2 с-1.

Расход после гидромотора на рисунке 6 меньше расхода перед гидромотором на рисунке 5. Часть расхода тратится на утечки в моторе. Утечки описаны в программе объемным КПД мотора.

На рисунках 5 – 13 видно, что переходные процессы при разгоне гидромотора привода валков подающих и при изменении нагрузки носит затухающий характер. Это позволяет сделать вывод об устойчивости системы гидропривода валков подающих.

Время выхода гидромотора на установившийся режим работы – 2,1 с.


4. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

4.1 Служебное назначение, конструкция гидравлического цилиндра и технологические требования к нему

Гидравлический цилиндр – гидравлическая машина, предназначенная для преобразования энергии потока рабочей жидкости в энергию движения выходного звена, рабочий процесс которой основан на попеременном заполнении рабочей камеры жидкостью и вытеснении его из рабочей камеры. На рисунке 5.1 показана конструкция гидроцилиндра.

Рисунок 14 – Конструкция гидравлического цилиндра

Гидроцилиндр состоит из: цилиндра (1), плунжера (2), втулки (3,6), кольца (4), кольца фторопластового (5), крышки (7), шайбы (8) и болта (9).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.