рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/

Координата

x

Заряд

q

Скорость

v =

Сила тока

i =

Ускорение

a =

Скорость изменения силы тока

i’ =

Масса

m

Индуктивность

L

Жесткость

k

Величина, обратная

электроемкости

Сила

F

Напряжение

U

Вязкость

r

Сопротивление

R

Потенциальная энергия

деформированной пружины

Энергия электрического поля

конденсатора

Кинетическая энергия

Энергия магнитного поля

катушки

Импульс

mv

Поток магнитной индукции

Li

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

ОСНОВНЫЕ ПОЛОЖЕНИЯ ( уч.10кл.стр.345-346)

Волновой процесс – процесс переноса энергии без переноса вещества.


Механическая волна – возмущение, распространяющееся в упругой среде.


Наличие упругой среды – необходимое условие распространения механической волны.


Перенос энергии и импульса в среде происходит в результате взаимодействия между соседними частицами среды.


Волны бывают продольные и поперечные.


Продольная механическая волна – волна, в которой движение частиц среды происходит в направлении распространения волны.


Поперечная механическая волна – волна, в которой движение частиц среды происходит в направлении перпендикулярном распространению волны.


Продольные волны могут распространяться в любой среде.


Поперечные волны в газа и жидкостях не возникают, так как в них отсутствуют фиксированные положения частиц.


Периодическое внешнее воздействие вызывает периодические волны.


Гармоническая волна – волна, порождаемая гармоническими колебаниями частиц среды.


Длина волны – расстояние, на которое распространяется волна за период колебаний ее источника

λ = vT

v – скорость волны


Скорость механической волны – скорость распространения возмущений в среде


Поляризация – упорядоченность направлений колебаний частиц в среде


Плоскость поляризации – плоскость, в которой колеблются частицы среды в волне.


Линейно-поляризованная механическая волна – волна, частицы которой колеблются вдоль определенного направления (линии)


Поляризатор – устройство, выделяющее волну определенной поляризации


Стоячая волна – волна, образующаяся в результате наложения двух гармонических волн, распространяющихся навстречу друг другу и имеющих одинаковый период, амплитуду и поляризацию


Пучности стоячей волны – положение точек, имеющих максимальную амплитуду колебаний.


Узлы стоячей волны – не перемещающиеся точки волны, амплитуда колебаний которых равна нулю.


На длине l струны, закрепленной на концах, укладывается целое число n полуволн поперечных стоячих волн.

= n (n = 1, 2, 3, …)

Такие волны называются модами колебаний


Мода колебаний для произвольного целого n>1 называется n-й гармоникой или n-м обертоном.

Мода колебаний первой гармоники называется основной модой колебаний.


Звуковые волны – упругие волны в среде, вызывающие у человека слуховые ощущения.

Звуковые волны лежат в пределах 16 Гц – 20 кГц


Скорость распространения звуковых волн определяется скоростью передачи взаимодействия между частицами среды.

Скорость звука в твердом теле, как правило, больше скорости звука в жидкости, которая в свою очередь превышает скорость звука в газе.


Звуковые сигналы классифицируют по высоте, тембру и громкости.


Высота звука – определяется частотой источника звуковых колебаний.

Чем больше частота колебаний, тем выше звук.


Тембр звука – определяется формой звуковых колебаний.

Различие формы колебаний, имеющих одинаковый период, связано с разными относительными амплитудами основной моды и обертонов.


Громкость звука – характеризуется уровнем интенсивности звука.


Интенсивность звука – энергия звуковых волн, падающая на площадь 1 м2 за 1 с

Единица измерения интенсивности звука – Вт/м2


Уровень интенсивности звука

β = 10 lg

I – интенсивность звука

I0 – 10-12 Вт/м2 – интенсивность, соответствующая порогу слышимости


Единица уровня интенсивности – дБ (децибел)


Порог слышимости – характеризуется минимальной интенсивностью звука, которая может фиксироваться человеческим ухом.

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ (уч.10кл. стр.69-70, уч.11кл.стр.137)

Виды механических колебаний. Примеры

Определение периодического движения

Определение гармонических колебаний. Примеры

Определение амплитуды

Определение фазы колебаний

Определение начальной фазы колебаний

Определение и формула периода. Единицы измерения

Определение и формула частоты. Единицы измерения

Определение циклической частоты. Ее связь с периодом и частотой

Представление гармонических колебаний в виде векторных диаграмм (уч.11кл.стр.137-139)

Сложение гармонических колебаний.

Энергия при гармонических колебаниях. ДОПОЛНИТЬ

 

 

Колебаниями называются процессы, характеризуемые определённой повторяемостью со временем.

Гармоническими называют колебания, при которых какая-либо физическая величина, описывающая процесс, из­меняется со временем по закону косинуса или синуса:

x(t) = A cos(ωt + α)

В частности колебания, возникающие в системе с одной возвращающей силой, пропорциональной деформации, являются гармоническими.


Выясним физический смысл постоянных A, w, a, входящих в это уравнение гармонических колебаний.


Константа А называется амплитудой колебания.

Амплитуда – это наибольшее значение, которое может принимать колеблющаяся величи­на.

Согласно определению, амплитуда она всегда положительна.


Выражение wt+a, стоящее под знаком косинуса, называют фазой колебания.

Она позволяет рассчитать значение колеблющейся величины в любой момент времени.


Постоянная величина a представляет собой значение фазы в момент вре­мени t =0 и называется начальной фазой колебания.

Значение начальной фазы определяется выбором начала отсчёта времени.


Минимальный интервал, через который происходит повторение движения тела, называется периодом колебаний Т.

Единица измерения – с (секунда)


Физическая величина, обратная периоду колебаний и характеризующая количество колебаний в единицу времени, называется частотой:

ν =

Единица измерения - Гц (Герц) = с-1. (В честь ученого Генриха Герца)


Величина w получила название циклической частоты, физический смысл которой связан с понятиями периода и частоты колебаний.


Cвязь между частотой и циклической частотой колебания.

Значения колеблющейся величины в моменты времени t1 и t2 = t1+T, где Т — период колебания, согласно определению периода равны между собой:

x(t1) = A cos(ωt1 + α)

x(t2) = A cos(ωt2 + α) = A cos(ω(t1+Т) + α)

x(t1) = x(t2) = A cos(ωt1 + α) = A cos(ωt1 + α + ωТ)

Это возможно, ес­ли ωТ = 2π, поскольку косинус - периодическая функция с периодом 2p радиан. Получаем:

ω =  = 2πυ


Из этого соотношения следует физический смысл циклической частоты - она показывает, сколько колебаний совершается за 2p секунд.


Метод векторных диаграмм

Для наглядного описания гармонических колебаний используется метод векторных диаграмм.

Гармонические колебания представляются в виде вектора. Модуль этого вектора равен амплитуде колебаний, а угол, образуемый вектором с осью Х, равен начальной фазе колебаний. Возможность такого представления следует из связи гармонических колебаний с вращением по окружности.

При вращении вектора его проекция на ось Х меняется по косинусоидальному закону:

A cos (ωt + φ).

Любое синусоидальное колебание можно рассматривать как косинусоидальное с определенной начальной фазой:

A sin (ωt + φ) = A cos (ωt + φ – π/2)


При наличии двух гармонических колебаний их разностью фаз Δφ = φ2 – φ1 на векторной диаграмме является угол между ними. В этом случае говорят, что одно колебание опережает или отстает от другого.


Сложение колебаний на векторной диаграмме производится по правилам сложения векторов, т.е. по правилу параллелограмма и треугольника.


Сумма гармонических колебаний также будет гармоническим колебанием.

АМПЛИТУДА, ПЕРИОД И ЧАСТОТА КОЛЕБАНИЙ (уч.10кл. стр.69-70)

Периодическое движение и его виды(см.выше уч.10кл.)

Определения и единицы измерения амплитуды, периода и частоты.

СВОБОДНЫЕ КОЛЕБАНИЯ (уч.10кл. стр.167-170)

Определение вынужденных колебаний

Определение свободных (собственных) колебаний

Необходимые условия возникновения свободных колебаний (уч.10кл.стр.167 на полях)

Определение точки поворота при колебаниях

Определение, формулы и единицы измерения периода и амплитуды колебаний


Гармонические колебания (См.выше)


Механическими колебаниями называют движения тел, повторяющиеся точно или приблизительно одинаково через одинаковые промежутки времени.

Общим признаков всех видов колебаний является повторяемость процесса движения через определенный интервал времени.

Силы, действующие между телами внутри рассматриваемой системы тел, называют внутренними силами.

Силы, действующие на тела системы со стороны других тел, называют внешними силами.


Принципиально возможны два вида колебаний:

- под действием внешних

- под действием внутренних сил.


Вынужденные колебания – колебания, происходящие под действием внешней периодической силы.


Свободные (собственные) колебания – колебания, происходящие под действием внутренних сил в системе, выведенной из положения равновесия и предоставленной самой себе.


Необходимые условия для возникновения свободных колебаний:

- наличие энергии, избыточной по сравнению в энергией системы в положении устойчивого равновесия

- наличие инертности

- работа силы трения в системе должна быть значительно меньше избыточной энергии

В отсутствии этих условий колебания быстро затухают или не возникают вообще.


Главной особенностью систем, в которых происходят колебания, являются наличие у них положения устойчивого равновесия.


Пример: груз на пружине в горизонтальной плоскости


Точка поворота – точка, в которой скорость колеблющегося тела равна нулю.


Период колебаний Т – интервал времени, в течении которого происходит одно полное колебание.

(Минимальный интервал, через который происходит повторение движения тела, называется периодом колебаний Т)


Физическая величина, обратная периоду колебаний и характеризующая количество колебаний в единицу времени, называется частотой:

ν =

Единица измерения - Гц (Герц) = с-1. (В честь ученого Генриха Герца)


Свободные колебания пружинного маятника являются гармоническими, т.е. отклонение маятника от положения равновесия происходит по косинусоидальному закону:

x = A cos(ω0t)

A – амплитуда колебаний -A ≤ x ≤ +A

Амплитуда колебаний – максимальное отклонение колеблющегося тела от положения равновесия.

ω0 – циклическая частота (а не угловая скорость, как при вращательном движении)



По второму закону Ньютона Fmax = Fупр.x

По закону Гука max = -kx


Циклическая частота собственных гармонических колебаний пружинного маятника:

ω0 =


T = = 2π

Период свободных колебаний пружинного маятника не зависит от начальных условий (амплитуда, скорость), а полностью определяется собственными характеристиками колебательной системы (жесткостью и массой)

Устойчивая система, выведенная из положения равновесия, возвращается к нему в результате гармонических колебаний.


Различные типы колебаний описываются подобно друг другу.


В отсутствии сил трения колебательная система является консервативной, поэтому для нее выполняется закон сохранения полной механической энергии:

Ek + Ep = Ek0 + Ep0

В начальный момент времени кинетическая энергия маятника, отклоненного на расстояние x0=A и отпущенного со скоростью v0=0, равна нулю.

Ep0 =  Þ E = Ep0

Полная механическая энергия гармонических колебаний пропорциональна квадрату их амплитуды

E =

С ростом энергии колебаний возрастает их амплитуда:

A =

чем больше жесткость k, тем меньше амплитуда колебаний


Кинетическая и потенциальная энергии непрерывно меняются, переходя друг в друга.

Полная механическая энергия системы согласно закону сохранения механической энергии:

+ = E =

 Потенциальная энергия максимальна в точках поворота Epmax =

и минимальна Epmin = 0 в положении равновесия.

Кинетическая энергия, наоборот, минимальна Ekmin = 0 в точках поворота

и максимальна Ekmax =  в положении равновесия.

Свободные колебания колебательной системы являются затухающими из-за наличия сил сопротивления (трения)

МАТЕМАТИЧЕСКИЙ МАЯТНИК (уч.10кл. стр.167-172)

Математический маятник.

Вынужденные и свободные колебания (см.выше уч.10кл.)

Свободные колебания пружинного маятника

График. Характер колебаний

Амплитуда. Формула

Период. Формула

Циклическая частота собственных гармонических колебаний пружинного маятника. Определение и формула

Полная механическая энергия свободных колебаний

Зависимость амплитуды от энергии


Тело небольших размеров, подвешенное на нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела, называется математическим маятником.


Математический маятник – это модель, реально таких маятников нет.


Вертикальное положением является положением равновесия, при котором сила тяжести уравновешивается силой упругости.


При малых отклонениях маятника от положения равновесия возникает равнодействующая сила, направленная к положению равновесия, и его колебания являются гармоническими.


Чтобы вывести эту формулу периода гармонических колебаний математического маятника, запишем второй закон Ньютона для маятника ΣFi = ma.

На маятник действуют сила тяжести и сила натяжения нити.


Их равнодействующая (см.рис.) равна: R = - mg

Следовательно, при малом угле отклонения (до 8о Rx ≈ R) по оси  X:

max = mx’’ = - mg Þ x’’ + x = 0

Корни дифференциального уравнения ????

УТОЧНИТЬ ВЫВОД ФОРМУЛЫ ПЕРИОДА КОЛЕБАНИЙ

Откуда: ω =  

Период гармонических колебаний математического маятника при небольшом угле размаха (до 8о) равен:

T =  = 2π



При гармонических колебаниях тела, подвешенного на пружине, сила упругости равна по закону Гука: F = -kx.

Пусть: x(t) = A sin(ωt)

По второму закону Ньютона: -kx = ma


Учитывая, что ускорение a = dx2/dt2 = x’’ (вторая производная координаты по времени)

ma = mx’’ = -kx Þ -mω2Asin(ωt) = -kAsin(ωt) Þ

ω = , T =  = 2π

ПЕРИОД КОЛЕБАНИЙ МАТЕМАТИЧЕСКОГО МАЯТНИКА (уч.10кл. стр.167-172)

См. выше «Математический маятник»

ПРЕВРАЩЕНИЯ ЭНЕРГИИ ПРИ ГАРМОНИЧЕСКИХ КОЛЕБАНИЯХ

ДОБАВИТЬ

См.выше «Гармонические колебания», «Свободные колебания», «Математический маятник», «Резонанс»


При отклонении математического маятника от положения равновесия его потенциальная энергия увеличивается (увеличивается расстояние до Земли).

При движении к положению равновесия скорость маятника возрастает, и увеличивается кинетическая энергия, за счет уменьшения запаса потенциальной.

В положении равновесия кинетическая энергия – максимальная, потенциальная – минимальна. В положении максимального отклонения – наоборот.


С пружинным – то же самое, но берется не потенциальная энергия в поле тяготения Земли, а потенциальная энергия пружины.


Свободные колебания всегда оказываются затухающими, т.е. с убывающей амплитудой, т.к. энергия тратится на взаимодействие с окружающими телами.

Потери энергии при этом равны работе внешних сил за это же время.

Амплитуда зависит от частоты изменения силы.

Максимальной амплитуды она достигает при частоте колебаний внешней силы, совпадающей с собственной частотой колебаний системы.

Явление возрастания амплитуды вынужденных колебаний при описанных условиях называется резонансом.


Так как при резонансе внешняя сила совершает за период максимальную положительную работу, то условие резонанса можно определить как условие максимальной передачи энергии системе.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ (уч.10кл. стр.167, 173-179)

Определение вынужденных колебаний (уч.10кл.стр.167)

Затухающие колебания. Определение. График для примера

Колебания под действием внешней силы (на примере)

Статическое смещение. Понятие

Определение вынужденных колебаний (уч.10кл.стр.177)

Вынужденные гармонические колебания тела. Закон колебаний. Формула амплитуды

Колебательная система.

Формула амплитуды вынужденных колебаний системы при наличии собственных колебаний

Резонанс



Свободные колебания колебательной системы являются затухающими. Однако на практике возникает потребность в создании незатухающих ко­лебаний, когда потери энергии в колебательной системе компенсируются за счёт внешних источников энергии.

В этом случае в такой системе воз­никают вынужденные колебания.


Вынужденными называют колебания, происходящие под действием периодически изменяющегося воздействия, а сами воздействия — вынуждающими.


Вынужденные колебания происхо­дят с частотой, равной частоте вынуждающих воздействий.


Амплитуда вынужденных колебаний возрастает при приближении частоты вынуж­дающих воздействий к собственной частоте колебательной системы. Она достигает максимального значения при равенстве указанных частот.


Явле­ние резкого возрастания амплитуды вынужденных колебаний, когда час­тота вынуждающих воздействий равна собственной частоте колеба­тельной системы, называется резонансом.


В реальной системе механическое движение всегда сопровождается трением. Силы трения, направленные противоположно перемещению маятника, совершают отрицательную работу, уменьшая его механическую энергию.


Затухающие колебания – колебания, амплитуда которых уменьшается с течением времени.


Апериодические колебания достигают установившегося значения за время меньше периода.


Статическое смещение – изменение положения равновесия колебательной системы под действием постоянной силы

Fупр = kx0 = F0

Под действием F0 положение равновесия маятника смещается на

x0 =  =  (так как циклическая частота пружинного маятника ω0 = )


Характеристики свободных колебаний, возникающих в системе, находящейся под воздействием постоянной силы, оказываются такими же, как и в ее отсутствие.

Смещается только положение равновесия.


Вынужденные колебания – колебания, происходящие под действием периодической внешней силы.

Эти колебания могут возникать как в колебательных системах, т.е. системах, имеющих положение устойчивого равновесия, так и в системах, не обладающих эти свойством.


Колебания тела под действием внешней периодической силы Fx = F0 cos(ωt), изменяющейся по гармоническому закону:

ax =  =  cos(ωt) = a0 cos(ωt)

где = a0 – амплитуда ускорения тела


Отклонение тела от положения равновесия x = A cos(ωt)

Амплитуда вынужденных колебаний A =  =

тело колеблется между точками 0 и 2A=

Период вынужденных колебаний T =


Рассмотрим характер вынужденных колебаний в системе, в которой возможны собственные колебания с частотой ω0 в отсутствии внешнего воздействия.

По второму закону Ньютона max = -kx + F0cos(ωt)

При колебательном движении x = A cos(ωt) и ax = -an cos(ωt) = -ω2r cos(ωt),

где r =A (амплитуда)


Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы ω:

A = ││



Если ω < ω0, амплитуда вынужденных колебаний увеличивается с ростом частоты вынуждающей силы.

При ω >> ω0 амплитуда вынужденных колебаний убывает с ростом частоты по закону квадратной гиперболы.

При ω = ω0 – резонанс.


Резонанс – явление резкого возрастания частоты вынужденных колебаний при совпадении частоты внешней силы с частотой собственных колебаний системы.


Резонансная кривая – график зависимости амплитуды вынужденных колебаний системы от частоты внешней силы.


При резонансе внешняя сила действует синхронно со свободными колебаниями системы.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.