рефераты скачать
 
Главная | Карта сайта
рефераты скачать
РАЗДЕЛЫ

рефераты скачать
ПАРТНЕРЫ

рефераты скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты скачать
ПОИСК
Введите фамилию автора:


Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/

Основное состояние атома (молекулы) – состояние с минимальной энергией.


В основном состоянии электрон находится ближе всего к ядру и его энергия связи с ядром максимальна по модулю.


Все состояния, кроме одного, являются стационарными условно, и только в одном – основном, в котором электрон обладает минимальным запасом энергии – атом может находиться сколь угодно долго, а остальные состояния называются возбужденными.


Возбужденные состояния атома – состояния с n > 1


Чем больше главное квантовое число n, тем дальше от ядра находится электрон, тем выше его энергетический уровень.


Энергетические уровни атома принято изображать горизонтальными линиями, перпендикулярными оси энергий.

При n ® ∞ электрон удаляется от ядра на бесконечно большое расстояние, а его энергия связи с ядром стремиться к нулю. Это значит, что при Е = 0 электрон уже не связан с ядром, становясь свободной частицей.


Свободные состояния электрона – энергетические состояния с положительной энрегией электрона.


В свободном состоянии скорость электрона и его кинетическая энергия может быть любой.

Энергетический спектр свободных состояний непрерывен.


Двигаясь по орбите вокруг ядра, электрон связан с атомом, или, как говорят, находится в связанном состоянии.


Связанные состояния электрона - энергетические состояния с отрицательной энергией электрона.

Энергетический спектр связанных состояний дискретен.


Для вырывания электрона из атома требуется дополнительная энергия для преодоления кулоновского притяжения электрона к ядру


Энергия ионизации – минимальная энергия, которую нужно затратить для перевода электрона из основного состояния атома в свободное состояние

I1= │E1│


Если энергия фотона недостаточна для ионизации атома hυ < I1, электрон, находящийся на первой боровской орбите (в основном состоянии с энергией Е1), под действием фотона может перескочить на другую орбиту, соответствующую возбужденному состоянию с энергией Em.

Согласно закону сохранения энергии этот переход электрона возможен, если частота υm поглощаемого фотона удовлетворяет соотношению.

hυm = Em – E1


Второй постулат Бора

Излучение света атомом происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En

При переходе из одного ста­ционарного состояния в другое испускается или по­глощается квант электромагнитного излучения.

Энергия излученного фотона равна разности энергий стационарных состояний:

 hυkm = Ek – En .


При переходе электрона с ближней орбиты на более удаленную, атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.

Подставляя значения энергии атома в начальном и конечном состояниях:

υkm = ( - ) , где n = 1, 2, 3, ...; k > n

Все возможные частоты, определяемые этим выражением, дают спектр атома водорода, хорошо согласующийся с экспериментальными данными


Спектр составляют ряд серий излучения, каждая из которых образуется при переходах атома в одно из фиксированных нижних энергетических состояний n из всех возможных энергетических состояний k ( k > n )


Переходы в первое возбужденное состояние (n = 2)с верхних уровней образуют серию Бальмера, наблюдаемую в видимом спектре.

 

Спектр поглощения вещества определяется в результате сравнения спектра излучения, падающего на вещество, со спектром излучения, прошедшего через него.

Атом вещества поглощает излучение той же частоты , которую излучает.

 

Опыт Франка и Герца

В1913г. исследовались столкновения электронов с атомами ртути.

УТОЧНИК ГРАФИК

В стеклянной трубке находились пары ртути. Электроны, вылетевшие из катода , нагреваемого электрическим током, ускоряются электрическим полем между катодом и сеткой. Их кинетическая энергия при достижения сетки равна работе электрического поля eU (e-заряд электрона, U- ускоряющее напряжение).

Между сеткой и анодом электроны тормозятся электрическим полем, созданным батареей G2.

Напряжение между сеткой и анодом 0.5В.


Пока напряжение между сеткой и катодом не превосходит 4.9В, возрастание напряжения сопровождается увеличением силы тока в цепи.

Резкое уменьшение силы тока в цепи анода при достижении напряжения 4.9В, между катодом и сеткой заставляет сделать вывод о том , что электроны, обладающие кинетической энергией 4.9В, полностью теряют ее в результате столкновений с атомами ртути.

Исходя из этих результатов можно сделать вывод, что разность энергий первого возбужденного стационарного состояния атома ртути Е2 и основного стационарного состояния Е1: Е2-Е1=4.9В

           

Наблюдения показали, что пока напряжение между катодом и сеткой меньше 4.9В пары ртути не излучают, а при достижении указанного напряжения пары испускают ультрафиолетовое излучение с указанной частотой.


Таким образом опыты Франка и Герца явились экспериментальным подтверждением правильности основных положений теории Бора

НУКЛОННАЯ МОДЕЛЬ ЯДРА (уч.10кл.стр.211,уч.11кл.стр.347)

Атомарная модель материального тела

Определение атома

Простые и сложные вещества

Нуклоны. Протон и нейтрон.

Протонно-нейтронная модель ядра

Сильное взаимодействие нуклонов в ядре

Комптоновская длина волны

Состав и размер ядер

Четные и нечетные ядра. Их устойчивость

Оценка размеров ядра



Модель материально точки не применима для пространственных масштабов, соизмеримых с размерами тела или меньших.


Моделью материального тела является совокупность движущихся и взаимодействующих между собой атомом (молекул)


Слово «атом» в переводе с греческого означает «неделимый». Под атомом долгое время, вплоть до начала XX в., подразумевали мельчайшие неделимые частицы вещества. К началу XX в. в науке накопи­лось много фактов, говоривших о сложном строении атомов.


Атом – наименьшая частица химического элемента, являющаяся носителем его свойств.


Все вещества по составу можно разделить на два класса: простые и сложные.

Простые вещества состоят из атомов одного и того же химического элемента, сложные – из атомов различных элементов.


Заряд ядра атома – главная характеристика химического элемента.


Атомное ядро состоит из протонов и нейтронов(нейтральные адроны).

Протоны и нейтроны, входящие в состав ядра, получили название – нуклоны (лат. nucleus – ядро)


Элементарные частицы, образующие ядра (нейтроны и протоны) — назы­ваются нуклонами.


Опыты Резерфорда (1910 г.) показали, что атомное ядро, находящееся в центре атома, в 10000 раз меньше размера электронной оболочки и сосредотачивает до 99.9% массы атома.

Изучение состава ядра проводилось с помощью бомбардировки его α-частицами, выбивающими из ядра частицы входящие в его состав.


Первой такой частицей, открытой Резерфордом в 1919 г. был протон (греч. protos – первый, первичный).

Протон имеет положительный заряд, равный заряду электрона е = 1.6*10-19Кл, и массу покоя примерно равную 1 а.е.м.

Протоны встречаются в земных условиях в свободном состоянии как ядра атомов водорода.


В 1932 г. английский физик Джеймс Чедвик установил, что при облучении ядер атома бериллия α-частицами из ядра вылетают нейтральные частицы массой, близкой к массе протона.

Эта частица была названа нейтроном (лат.neutron – ни тот ни другой, или нейтральный)

Масса покоя свободного нейтрона очень незначительно превосходит массу протона.

В свободном виде в земных условиях нейтрон практически не встречается из-за неустойчивости - самопроизвольно распадается: среднее время жизни близко к 15,3 мин.


По современным представлениям протон и нейтрон являются двумя разными состояниями одной и той же частицы – нуклона (лат.nucleus – ядро)

Протон – нуклон в заряженном состоянии, нейтрон – в нейтральном.


Обозначение - .

Нижний индекс – заряд частицы, кратный заряду протона +e (или зарядовое число Z), верхний – число нуклонов, которое содержит частица (или массовое число А).


Подобно электрону, протон и нейтрон имеют спиновой момент импульса, равный ћ/2.

Протон и нейтрон обладают полуцелым спином (в единицах ћ)


Протонно-нейтронная модель ядра

Предложена в 1932 г. российским физиком Д.Д.Иваненко и В.Гейзенбергом.

Ядро атома любого химического элемента состоит из двух видов элементарных частиц: протонов и нейтронов.

Вследствие электронейтральности атома число Z протонов я ядре (зарядовое число), имеющих заряд +Ze, равно числу электронов с полным зарядом –Ze, движущихся вокруг ядра. При этом в ядре различных изотопов может находится различное число нейтронов.


Сильное взаимодействие нуклонов

Протоны и нейтроны удерживаются в ядре в результате сильного взаимодействия, существующего между ними. Наличие такого взаимодействия было подтверждено в 1919 г. опытами Резерфорда.

В этих опытах бомбардировке α-частицами подвергались ядра легких атомов, с малым Z. При бомбардировке ядер атома водорода (протонов) α-частицы испытывали кулоновское отталкивание от протона, находясь от него на расстоянии превышающем 3 фм (1 фм = 10-15м) На меньших расстояниях наблюдалось притяжение α-частиц к протону, обусловленное сильным взаимодействием нуклонов друг с другом.

Нейтрон начинает притягиваться к протону на расстоянии меньше 2 фм. Но на расстоянии меньше 0.4 фм начинают действовать мощные силы взаимного отталкивания.


Притяжение между протоном и нейтроном теоретически объясняется их постоянным обменом друг с другом виртуальной (экспериментально не наблюдаемой при таком взаимодействии) частицей – π+-мезоном.


Взаимодействие путем обмена виртуальными частицами не имеет простого объяснения. Согласно законам сохранения импульса и энергии свободный протон или нейтрон не могут испустить частицу без поступления энергии извне. Для такого испускания необходима энергия не меньше DЕ = m0c (m0 – масса покоя частицы)


Однако, соотношение неопределенностей Гейзенберга DЕDt ≥ ћ допускает нарушение закона сохранения энергии в течении малого промежутка времени Dt = ћ/(m0c2), необходимого для испускания частицы, называемой виртуальной.

За это время виртуальная частица не может уйти дальше, чем на расстояние:

R = сDt =

Эту длину называют комптоновской длиной волны частицы (Артур Комптон – американский физик)


Комптоновская длина волны частицы – пространственный масштаб существования виртуальной частицы.


Комптоновская длина волны определяет радиус действия того или иного вида взаимодействия.


Электромагнитные взаимодействия заряженных частиц осуществляются обменом фотонами. Для фотона m0 = 0, поэтому радиус действия электромагнитных сил R®¥, т.е. эти силы являются дальнодействующими.


Зная радиус действия ядерных сил Rя ≈ 10-15м, можно оценить массу виртуальной частицы – переносчика сильного взаимодействия:

m0 = ≈ 3*10-28 кг

что очень близко к массе элементарной частицы π+-мезона, открытого в 1947 г.


Сильное взаимодействие не зависит от заряда частицы: оно связывает между собой заряженные нуклоны, нейтральные, а так же заряженные и нейтральные частицы.


Зарядовая симметрия сильного взаимодействия – независимость сил, взаимодействие между нуклонами от их электрических зарядов.


Взаимодействие протонов происходит в результате обмена виртуальными нейтральными π0-мезонами(пионами) Процесс обмена нуклонов виртуальными частицами изображают на диаграммах Феймана (Р.Фейман – американский физик), на которых реальной частице соответствует прямая линия, а виртуальной – волнистая.


Ядерные силы взаимодействия зависят от взаимной ориентации спинов нуклонов. При антипараллельных спинах энергия взаимодействия нуклонов оказывается меньше, чем при параллельных.


Парное расположение нуклонов с антипараллельными спинами в одном энергетическом состоянии ядра энергетически выгодно.


Состав и размер ядра

Ядро, состоящее из одних протонов, неустойчиво из-за кулоновского отталкивания протонов. Нейтроны, входящие в состав ядра, стабилизируют его. Силы их ядерного притяжения между собой и к протонам препятствуют кулоновскому отталкиванию протонов.

Энергия ядер, как и атомов, квантуется, т.е. ядра обладают дискретным набором энергетических состояний.

В случае нечетного числа протонов или нейтронов в ядре неспаренный нуклон может занять лишь следующий, более высокий энергетический уровень. Обладая большей энергией, ядра с нечетными Z и N (нечетно-нечетные ядра) оказываются менее стабильными.

Существует всего четыре стабильных нечетно-нечетных ядра , для которых Z = N, а нечетно-четных стабильных ядер не существует вообще.


Нечетно-четные ядра – ядра, состоящие из нечетного(четного) числа протонов и четного(нечетного) числа нейтронов.

Наиболее стабильными являются четно-четные ядра, состоящие из четного числа протонов и нейтронов.


Особой устойчивостью среди четно-четных ядер отличаются «магические» ядра – у которых число Z протонов или N нейтронов равно одному из чисел 2, 8, 20, 28, 50, 82, 126. Эти числа называются «магическими» Они отражают периодичность заполнения нуклонами энергетических оболочек ядра.

Максимальной устойчивостью и поэтому наибольшей распространенностью в природе обладают дважды магические ядра, у которых магическим является как число протонов так и число нейтронов. Например, .

У магических ядер энергия связи нуклона аномально велика по сравнению с его энергией связи в ядрах с соседними массовыми числами.


Предполагая, что нуклоны плотно упакованы в ядре с массовым числом А, можно оценить радиус R. Условно принимая радиус нуклона r0, можно считать что объем ядра складывается из объема отдельных нуклонов:

πR3 = ( πr03) A


Следовательно, радиус ядра равен:

 R = r0A1/3  .


Эксперимент показывает, что r0 = 1.2 фм


Плотность ядерного вещества очень большая:

ρ = (порядка 1017 кг/м3)


Из ядерного вещества состоят нейтронный звезды – гигантские ядра, удерживаемые гравитационным притяжением.

ЗАРЯД ЯДРА

См.выше. «Нуклонная модель ядра» (уч.10кл.стр.211)


Протон (ядро атома водорода) обладает положитель­ным зарядом +е, равным заряду электрона и имеет массу в 1836 раз боль­ше массы электрона.


Нейтрон — электрически нейтральная частица с мас­сой примерно равной 1839 масс электрона.


Количество протонов Z в ядре нейтрального атома равно числу элек­тронов в его электронной оболочке и определяет его заряд, равный +Ze.

Зарядовое число – равно числу протонов в ядре. Обозначается Z

Зарядовое число ядра совпадает с порядковым номером элемента в периодической системе элементов Менделеева.


Полный заряд ядра равен +Ze

Суммарный заряд электронов в атоме равен -Ze


В целом атом электронейтрален. Положительный заряд ядра компенсируется отрицательным зарядом электронов.


Электрический заряд атома ядра q равен произведению элементарного электрического заряда e на порядковый номер Z химического элемента в таблице Менделеева:

q = Z e

МАССОВОЕ ЧИСЛО ЯДРА

См.выше. «Нуклонная модель ядра» (уч.10кл.стр.211)


Масса атома складывается из массы ядра и электронов.

Почти вся масса атома сосредоточена в ядре из-за крайне малой массы электронов.

Масса ядра примерно в 2000 раз превосходит массу электронов.


Массовое число равно суммарному количеству протонов Z и нейтронов N в ядре:

A = Z + N

Число нейтронов в ядре одного и того же элемента может быть разным

N = A – Z


Изотоп – разновидность одного и того же химического элемента, атом которого содержит одинаковое число протонов в ядре и разное число нейтронов.

Атомы с одинаковым зарядом ядра, но различными массами, называются изотопами. Изотопы различаются своими спектрами.


Изотопы – атомы одного и того же химического элемента, имеющие одинаковое число протонов в ядре (зарядовое число Z) и разное число нейтронов (N)


Слева вверху от символа химического элемента указывается массовое число А, а внизу – зарядовое число Z

Условное обозначение позволяет легко определить состав ядра и число электронов в атоме.


Ядро атома обозначается тем же симво­лом, что и химический элемент, снабжаясь двумя индексами (например, ), из которых верхний обозначает массовое, а нижний - зарядовое число.


Дефект масс – разность суммарной массы отдельных частиц, входящих в состав атома (ядра), и полной массы атома (ядра)

∆m = m∑ - m


Дефект массы характеризует уменьшение массы ядра, образующегося при объединении нуклонов, по сравнению с суммарной этих нуклонов до объединения.


Уменьшение массы ядра сопровождается уменьшением его энергии

∆E = ∆mc2


Уменьшение энергии при образовании атома из нуклонов и электронов происходит в результате выделения энергии при объединении в ядро протонов и нейтронов, а так же вследствие излучения энергии при присоединении электронов к ядру.

Атомная единица массы (а.е.м.) – средняя масса нуклона в атоме углерода

1 а.е.м. =  =1,66*10-27 кг

(в атоме углерода  содержится 12 нуклонов)


Относительная атомная масса Mr - число атомных единиц массы, содержащихся в массе атома.

Относительная атомная масса почти совпадает с числом нуклонов в его ядре

 Mr ≈ A

Разница объясняется различием средней массы нуклонов в ядрах разных атомов.

ЭНЕРГИЯ ЧАСТИЦ В ЯДРЕ. ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР(уч.11кл.стр.354-357)

Энергия связи атомных ядер

Дефект массы

Удельная энергия связи

Устойчивость ядер в зависимости от размера

Синтез и деления ядер (см.ниже)



Для изучения ядерных сил, казалось бы, надо знать их зависимость от расстояния между нуклонами. Однако изучение связи между нуклонами может быть проведено и энергетическими методами.


О прочности того или иного образования судят по тому, насколько легко или трудно его разрушить: чем труднее его разрушить, тем оно прочнее. Но разрушить ядро — это значит разорвать связи между его ну­клонами. для разрыва этих связей, т.е.

для расщепления ядра на состав­ляющие его нуклоны, необходимо затратить определённую энергию, на­зываемую энергией связи ядра.

Минимальную энергию, которую необходимо затратить на разделение ядра на составляющие его нуклоны, называют энергией связи ядра, расходуемой на совершение работы против ядерных сил притяжения.

Энергия связи ядра равна минимальной работе, которую надо совершить для разделения ядра на составные части – протоны и нейтроны.

Такая энергия выделяется при образовании ядра из протонов и нейтронов и определяется уменьшением массы ядра по сравнению с массой протонов и нейтронов, входящих в его состав (так называемый «дефект массы»)


Оценим энергию связи атомных ядер.

Пусть масса покоя нуклонов, из которых образуется ядро, равна m1.

Согласно специальной теории относительности, ей соответствует энергия e1 = m1c2, где с — скорость света в вакууме.

После образования ядро об­ладает энергией e2= Mc2

М— масса ядра.


Измерения показывают, что масса покоя ядра всегда меньше, чем масса покоя частиц в свободном состоянии, составляющих данное ядро. Разность этих масс называют де­фектом массы. Поэтому при образовании ядра происходит выделение энергии:

Δe = e1 - e2 = (m1-M)c2 = Δmc2


Из закона сохранения энергии можно заключить, что такая же энергия должна быть затрачена на расще­пление ядра на протоны и нейтроны.

Поэтому энергия связи равна:

eсв = Δmc2.


Если ядро с массой М образовано из Z протонов с массой mpи из N = А - Z нейтронов с массой mn, то дефект массы равен:

 Δm = Zmp + (A-Z)mn - M


C учетом этого энергия связи находится по формуле:

eсв = Δmc2 = [Zmp + (A-Z)mn – M]c2


Об устойчивости ядер судят по средней энергии wсв связи, приходя­щейся на один нуклон ядра, которая называется удельной энергией связи.

wсв=

Отношение энергии связи к массовому числу называется удельной энергией связи.

Для небольших ядер удельная энергия связи мала из-за малого числа нуклонов. Наибольшей энергией связи обладают стабильные ядра, содержащие целое число α-частиц ()

У тяжелых элементов при больших Z энергия связи нуклона уменьшается из-за кулоновского отталкивания протонов.

Слабая зависимость энергии связи нуклонов от полного числа А нуклонов в ядре подтверждает, что нуклоны связаны короткодействующими силами. Лишний нуклон взаимодействует лишь с ближайшими соседями.


Синтез и деления ядер

При соединении двух легких ядер, например  может образоваться тяжелое ядро с большой энергией связи. При таком процессе ядерного синтеза выделяется значительная энергия, равная разности энергий связи тяжелого ядра и двух легких ядер.

При ядерном делении - расщеплении тяжелых ядер, например , образуются ядра более легких элементов с большими энергиями связи. При таком ядерном расщеплении так же выделяется энергия.

Водород и уран обладают минимальной удельной энергией связи (соответственно среди легких и тяжелых элементов), поэтому при синтезе и расщеплении именно этих ядер выделяется максимальная энергия.

ДЕЛЕНИЕ ЯДЕР. ЦЕПНАЯ РЕАКЦИЯ(уч.11кл.стр.367-372)

Деление ядер урана под действием нейтронов

Выделение энергии при делении ядер урана

Цепная реакция деления

Скорость цепной реакции

Критическая масса

Коэффициент размножения нейтронов

Необходимые условия самоподдерживающейся цепной реакции


Ядра могут делиться на ядра меньшей массы при внешнем воздействии.


В 30-х годах опытно было установлено, что при облучении урана нейтронами образуются ядра лантана, который не мог образоваться в результате альфа- или бета-распада. Ядро урана-238 состоит из 92 протонов и 146 нейтронов. При делении ровно пополам должен был бы образовываться празеодим , но в стабильном ядре празеодима нейтронов на 9 меньше. Поэтому при делении урана образуются другие ядра и избыток свободных нейтронов.


В 1939 году было произведено первое искусственное деления ядра урана немецкими учеными Отто Ганом и Фрицем Штрассманом. При этом выделялось 2-3 свободных нейтрона и 200 МэВ энергии, причем около 165 МэВ выделялось в виде кинетической энергии ядер-осколков  или  или .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43


рефераты скачать
НОВОСТИ рефераты скачать
рефераты скачать
ВХОД рефераты скачать
Логин:
Пароль:
регистрация
забыли пароль?

рефераты скачать    
рефераты скачать
ТЕГИ рефераты скачать

Рефераты бесплатно, реферат бесплатно, рефераты на тему, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.